anonymous
  • anonymous
This is the first dish \[\int \frac{x^2}{1-x^2}dx\] Apart from resolving that into partial fractions, what is a better way to do it?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
let x=sinu \[\int \frac{x^2}{1-x^2}dx = \int\frac{sin^2ucosu}{cos^2u}du=\int(sec^2u-cosu)du=tanu-sinu+C\]?
anonymous
  • anonymous
Last line there: tanu -sinu +C \[=\frac{x}{x^2+1}-x+C\] What am I doing here :S
anonymous
  • anonymous
\[\frac{sin^2ucosu}{cos^2u}=\frac{(1-cos^2u)cosu}{cos^2u} = sec^2u-cosu\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

hartnn
  • hartnn
tan u is x/ sqrt(1-x^2)
anonymous
  • anonymous
Oh.. My mistake! \[=\frac{x}{1-x^2} -x+C\]
anonymous
  • anonymous
Alright, let's go to the main dish :S
hartnn
  • hartnn
and its not sec^2 , check again
hartnn
  • hartnn
sec-cos
anonymous
  • anonymous
secu! I'd better do it all over again!!! \[\int \frac{x^2}{1-x^2}dx \]\[= \int\frac{sin^2ucosu}{cos^2u}du\]\[=\int(secu-cosu)du\]\[=\ln|secu+tanu|-sinu+C\]
hartnn
  • hartnn
not a better way......
anonymous
  • anonymous
I know, I just try whatever I can.. Is there a better way then?
hartnn
  • hartnn
i don't think,partial is best....
anonymous
  • anonymous
\[\int \frac{x^2}{1-x^2}dx\]\[ = \int (\frac{1}{2(x+1)}-\frac{1}{2(x-1)}-1)dx\]\[=\frac{1}{2} ln|x+1| -\frac{1}{2}ln|x-1|-x+C\]\[=\frac{1}{2}ln|\frac{x+1}{x-1}|-x+C\]
hartnn
  • hartnn
yup, thats correct.....

Looking for something else?

Not the answer you are looking for? Search for more explanations.