Quantcast

A community for students. Sign up today!

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

UnkleRhaukus

  • 2 years ago

Use partial fractions or the convolution theorem and the table of Laplace transforms, to find functions of \(t\) which have the following Laplace transforms. (d) \[F(p)=\frac{p^2}{(p+3)^3}\]

  • This Question is Closed
  1. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    (d) partial fractions \[\begin{align*} F(p)&=\frac{p^2}{(p+3)^3} &=\frac{A}{p+3}+\frac B{(p+3)^2}+\frac C{(p+3)^3}\\ \\&&p^2=A(p+3)^2+B(p+3)+C\\ \\&\text{for } p=-3&9=C\\ \\&\text{for } p=0&0=9A+3B+9\\ &&0=3A+B+3\\ &&B=-3(A+1)\\ \\&\text{for } p=-1&1=4A+2B+9\\ &&0=4A+2B+8\\ &&0=2A+B+4\\ &&0=2A-3(A+1)+4\\ &&0=-A+1\\ &&A=1\\ \\&&B=-6\\ \\F(p) &=\frac{1}{p+3}-\frac 6{(p+3)^2}+\frac 9{(p+3)^3}\\ \\ f(t)&=\mathcal L^{-1}\left\{\frac{1}{p+3}-\frac 6{(p+3)^2}+\frac 9{(p+3)^3}\right\}\\ &=e^{-3t}\mathcal L^{-1}\left\{\frac{1}{p}-\frac 6{p^2}+\frac 9{p^3}\right\}\\ &=e^{-3t}\left(1-6t+\frac 92t^2\right)\\ &=e^{-3t}-6te^{-3t}+\frac 92t^2e^{-3t}\\ \end{align*}\]

  2. cnknd
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    looks fine to me

  3. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    (d) convolution theorem\[\begin{align*} F(p)&=\frac{p^2}{(p+3)^3}\\ &= p^2\times\frac12\times\frac{\Gamma(3)}{(p+3)^3}\\ \\ f(t)&=\tfrac12\mathcal L^{-1}\left\{p^2\times\frac2{(p+3)^3}\right\}\\ &=\tfrac12\int\limits_0^t\delta''(t)\Big|_{t\rightarrow t-u}\left(u^2e^{-3u}\right)\text du\\ &=\tfrac12\int\limits_0^t\delta''(t-u)\left(u^2e^{-3u}\right)\text du\\ &=\quad\dots\\ \end{align*}\]

  4. cnknd
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    actually, isn't there a known inverse transform for p/(p+3)^2?

  5. sirm3d
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    i would like to add an alternate solution to partial fractions |dw:1353607529536:dw|\[\large \frac{ p^2 }{ (p+3)^3 }=\frac{ 1 }{ p+3 }-\frac{ 6 }{ (p+3)^2 }+\frac{ 9 }{ (p+3)^3 }\]

  6. sirm3d
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    also, in \[\frac{ p^2 }{ (p+3)^3 }=\frac{ A }{p+3 }+\frac{ B }{ (p+3)^2 }+\frac{ C }{ (p+3)^3 }\] LET \[\large \phi(p)=p^2\]\[\large C=\phi(-3)=9\]\[\large B=\phi \prime (-3)=-6\]\[\large A = \frac{ \phi \prime \prime (-3) }{ 2! }=1\]

  7. mahmit2012
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    |dw:1353613382376:dw|

  8. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    i still dont understand this

  9. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Ask a Question
Find more explanations on OpenStudy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.