UnkleRhaukus
  • UnkleRhaukus
Use partial fractions or the convolution theorem and the table of Laplace transforms, to find functions of \(t\) which have the following Laplace transforms. (d) \[F(p)=\frac{p^2}{(p+3)^3}\]
Differential Equations
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
UnkleRhaukus
  • UnkleRhaukus
(d) partial fractions \[\begin{align*} F(p)&=\frac{p^2}{(p+3)^3} &=\frac{A}{p+3}+\frac B{(p+3)^2}+\frac C{(p+3)^3}\\ \\&&p^2=A(p+3)^2+B(p+3)+C\\ \\&\text{for } p=-3&9=C\\ \\&\text{for } p=0&0=9A+3B+9\\ &&0=3A+B+3\\ &&B=-3(A+1)\\ \\&\text{for } p=-1&1=4A+2B+9\\ &&0=4A+2B+8\\ &&0=2A+B+4\\ &&0=2A-3(A+1)+4\\ &&0=-A+1\\ &&A=1\\ \\&&B=-6\\ \\F(p) &=\frac{1}{p+3}-\frac 6{(p+3)^2}+\frac 9{(p+3)^3}\\ \\ f(t)&=\mathcal L^{-1}\left\{\frac{1}{p+3}-\frac 6{(p+3)^2}+\frac 9{(p+3)^3}\right\}\\ &=e^{-3t}\mathcal L^{-1}\left\{\frac{1}{p}-\frac 6{p^2}+\frac 9{p^3}\right\}\\ &=e^{-3t}\left(1-6t+\frac 92t^2\right)\\ &=e^{-3t}-6te^{-3t}+\frac 92t^2e^{-3t}\\ \end{align*}\]
anonymous
  • anonymous
looks fine to me
UnkleRhaukus
  • UnkleRhaukus
(d) convolution theorem\[\begin{align*} F(p)&=\frac{p^2}{(p+3)^3}\\ &= p^2\times\frac12\times\frac{\Gamma(3)}{(p+3)^3}\\ \\ f(t)&=\tfrac12\mathcal L^{-1}\left\{p^2\times\frac2{(p+3)^3}\right\}\\ &=\tfrac12\int\limits_0^t\delta''(t)\Big|_{t\rightarrow t-u}\left(u^2e^{-3u}\right)\text du\\ &=\tfrac12\int\limits_0^t\delta''(t-u)\left(u^2e^{-3u}\right)\text du\\ &=\quad\dots\\ \end{align*}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
actually, isn't there a known inverse transform for p/(p+3)^2?
sirm3d
  • sirm3d
i would like to add an alternate solution to partial fractions |dw:1353607529536:dw|\[\large \frac{ p^2 }{ (p+3)^3 }=\frac{ 1 }{ p+3 }-\frac{ 6 }{ (p+3)^2 }+\frac{ 9 }{ (p+3)^3 }\]
sirm3d
  • sirm3d
also, in \[\frac{ p^2 }{ (p+3)^3 }=\frac{ A }{p+3 }+\frac{ B }{ (p+3)^2 }+\frac{ C }{ (p+3)^3 }\] LET \[\large \phi(p)=p^2\]\[\large C=\phi(-3)=9\]\[\large B=\phi \prime (-3)=-6\]\[\large A = \frac{ \phi \prime \prime (-3) }{ 2! }=1\]
anonymous
  • anonymous
|dw:1353613382376:dw|
UnkleRhaukus
  • UnkleRhaukus
i still dont understand this

Looking for something else?

Not the answer you are looking for? Search for more explanations.