Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

RolyPoly

  • 3 years ago

Main dish \[(1-x^2) y'-x^2y = (1+x)\sqrt{1-x^2}\]

  • This Question is Closed
  1. RolyPoly
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    \[y' - \frac{x^2}{1-x^2}y = \frac{(1+x)\sqrt{1-x^2}}{1-x^2}\]\[y' - \frac{x^2}{1-x^2}y = \frac{\sqrt{1-x^2}}{1-x}\] Not yet finished.

  2. RolyPoly
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    \[\alpha =\exp[-\int\frac{x^2}{1-x^2}dx=e^{-\frac{1}{2}ln|\frac{x+1}{x-1}|+x}\]

  3. RolyPoly
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    \[=\frac{e^x}{|\frac{x+1}{x-1}|^\frac{1}{2}}=\frac{\sqrt{x-1}e^x}{\sqrt{1+x}}\]

  4. RolyPoly
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    \[y= \frac{\sqrt{1+x}}{\sqrt{x-1}e^x}\int \frac{\sqrt{|x-1|}e^x}{\sqrt{1+x}}(\frac{\sqrt{1-x^2}}{1-x})dx\]\[=\frac{\sqrt{1+x}}{\sqrt{x-1}e^x}\int \frac{\sqrt{(|1-x|)(1-x)}e^x}{1-x}dx\]\[=\frac{\sqrt{1+x}}{\sqrt{x-1}e^x}\int e^xdx\]\[=\frac{\sqrt{1+x}}{\sqrt{x-1}e^x}( e^x+C)\]\[=\frac{\sqrt{1+x}}{\sqrt{x-1}}+\frac{C\sqrt{1+x}}{\sqrt{x-1}e^x}\] Oh.. I don't know how to do it :(

  5. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy