anonymous
  • anonymous
integrate:
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
|dw:1352245389039:dw|
anonymous
  • anonymous
i really dont have an idea...
anonymous
  • anonymous
|dw:1352246169490:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
@RolyPoly
anonymous
  • anonymous
Neither do I.. :( Let u=x+4 du = dx => x+2 = u-2 ; x = u-4 \[\int (\frac{x+2}{x+4})^2 e^x dx = \int (\frac{u-2}{u})^2 e^{u-4}du = \int\frac{u^2-4u+4}{u^2}e^{u-4}du\]\[=\int (e^{u-4}-\frac{4e^{u-4}}{u}+\frac{4e^{u-4}}{u^2})du\] I'm sure @hartnn has a better idea!!
hartnn
  • hartnn
can u find derivative of x/(x+4) ??
anonymous
  • anonymous
yes...wait...but why x / x+4?
hartnn
  • hartnn
find its derivative, u'll come to know.....
anonymous
  • anonymous
|dw:1352246668426:dw|
hartnn
  • hartnn
wait i think i made a mistake....
hartnn
  • hartnn
u'll need integration by parts. but that becomes very messy...
hartnn
  • hartnn
i just realized that x/x+4 + d/dx (x/x+4) = [(x+2)/(x+4)]^2
hartnn
  • hartnn
then using this : \(\\ \huge \color{red}{\int e^x[f(x)+f’(x)]dx=e^xf(x)+c} \\\) i got the integral as (xe^x)/(x+4) + c
hartnn
  • hartnn
i don't know how to explain that ....
anonymous
  • anonymous
Reverse: \[\frac{d}{dx} e^x f(x)+C= e^xf(x)+e^xf'(x)=e^x(f(x)+f'(x))\]So, \[\int e^x(f(x)+f'(x)) = e^xf(x)+C\] And the question, Consider f(x) = x/x+4 f'(x) = 4/(x+4) f(x) + f'(x) = [(x+2)/(x+4)]^2 So, \[\int [\frac{(x+2)}{(x+4)}]^2e^xdx = \int e^x(\frac{x}{x+4}+\frac{4}{(x+4)^2})dx=e^x(\frac{x}{x+4})+C\] Hail @hartnn
anonymous
  • anonymous
yes..that's im about to type lol thanks! @hartnn @RolyPoly
hartnn
  • hartnn
i meant i can't explain how we can think of f(x) as x/(x+4) all other steps are just use of formula.....
hartnn
  • hartnn
comes with practice, i guess...

Looking for something else?

Not the answer you are looking for? Search for more explanations.