anonymous
  • anonymous
lin when n goes to infinity of ((2^n)*n!)/((n+1)*(n+2*....*(n+n)) Help me pleaseeeee
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Zarkon
  • Zarkon
use the same trick I told you to use before..show that the sum of your sequence converges...therefore the limit is zero
anonymous
  • anonymous
i can t figure it out please explain further please
Zarkon
  • Zarkon
use the ratio test you could also use stirling's approximation to find the limt

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
i write them in that form an+1 over an and i get stuck sorry i really don t know how to solve it, please give me a further hint or show me to see how u did it
Zarkon
  • Zarkon
\[a_{n}=\frac{2^{n}{n}!}{\displaystyle\prod_{i=1}^{n}(n+i)}\] \[a_{n+1}=\frac{2^{n+1}{(n+1)}!}{\displaystyle\prod_{i=1}^{n+1}(n+1+i)}\] \[\frac{a_{n+1}}{a_{n}}=\frac{\frac{2^{n+1}{(n+1)}!}{\displaystyle\prod_{i=1}^{n+1}(n+1+i)}}{\frac{2^{n}{n}!}{\displaystyle\prod_{i=1}^{n}(n+i)}}\] \[=\frac{2^{n+1}{(n+1)}!}{\displaystyle\prod_{i=1}^{n+1}(n+1+i)}\frac{\displaystyle\prod_{i=1}^{n}(n+i)}{2^{n}{n}!}\] \[=2(n+1)\frac{\displaystyle\prod_{i=1}^{n}(n+i)}{\displaystyle\prod_{i=1}^{n+1}(n+1+i)}\] \[=2(n+1)\frac{(n+1)(n+2)\cdots(n+n)}{(n+2)(n+3)+\cdots(n+n)(n+n+1)(n+n+2)}\] \[=\frac{2(n+1)(n+1)}{(n+n+1)(n+n+2)}\] \[=\frac{2(n+1)(n+1)}{(2n+1)(2n+2)}\] \[=\frac{2(n+1)(n+1)}{(2n+1)2(n+1)}=\frac{n+1}{2n+1}\to\frac{1}{2} \text { as }n\to\infty\]
Zarkon
  • Zarkon
\[\frac{1}{2}<1\] so the sum converges and therefore the limit of the sequence is zero
Zarkon
  • Zarkon
do you understand?
anonymous
  • anonymous
Yes, thank you very much, u hellped a lot :D

Looking for something else?

Not the answer you are looking for? Search for more explanations.