anonymous
  • anonymous
I have a sequence that must have lim when n goes to infinity equal to 1 (pic below)
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
1 Attachment
barrycarter
  • barrycarter
Hint: how many terms are in each element of the sequence, and what are they bounded by?
anonymous
  • anonymous
each one of them has lim=0?

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

barrycarter
  • barrycarter
Not quite. There are n terms, each of which is very near 1/n
anonymous
  • anonymous
it s true, i can see that now, but how can i use this thing?
zzr0ck3r
  • zzr0ck3r
let x_n = 1+1/n
anonymous
  • anonymous
x_n is just 1+1/n?
anonymous
  • anonymous
Please explain further
ash2326
  • ash2326
@graydarl Have you studied sandwich theorem ?
ash2326
  • ash2326
We have the series as \[\lim_{n\to \infty} (\frac{1}{\sqrt{n^2+1}}+\frac{1}{\sqrt{n^2+2}}+....\frac{1}{\sqrt{n^2+n}})\] Obviosuly each of the term is less than 1/n \[\frac{1}{\sqrt{n^2+1}}< \frac 1 n \] \[\frac{1}{\sqrt{n^2+n}}< \frac 1 n\] so whole series sum will be less than \[\frac 1 n + \frac 1 n ....\frac 1 n\] note that there are n terms And if you notice each of the term is greater than 1/(n+1) \[\frac{1}{\sqrt{n^2+1}}>\frac{1}{\sqrt{n^2+2n+1}}\] \[\frac{1}{\sqrt{n^2+n}}>\frac{1}{\sqrt{n^2+2n+1}}\] so we have \[\frac{1}{n+1}+\frac{1}{n+1}....+\frac{1}{n+1}<\frac 1 {\sqrt{n^2+1}}+\frac{1}{\sqrt{n^2+2}}....+\frac{1}{\sqrt{n^2+n}}\] \[<\frac{1}{n}+\frac{1}{n}.........+\frac{1}{n}\] Now apply the limit \(n\to \infty\) \[\lim_{n\to \infty}(\frac{1}{n+1}+\frac{1}{n+1}....+\frac{1}{n+1})<\] \[\lim_{n\to \infty}(\frac 1 {\sqrt{n^2+1}}+\frac{1}{\sqrt{n^2+2}}....+\frac{1}{\sqrt{n^2+n}})\] \[<\lim_{n\to \infty}(\frac{1}{n}+\frac{1}{n}.........+\frac{1}{n})\] Evaluate the limits for lower and upper bound. If you get the same limit, then by sandwich theorem, you'll be able to prove. Could you try @graydarl
ash2326
  • ash2326
I mean evaluate these two limits \[\Large {\lim_{n\to \infty}(\frac{1}{n+1}+\frac{1}{n+1}....+\frac{1}{n+1})}\] \[\Large \lim_{n\to \infty}(\frac{1}{n}+\frac{1}{n}.........+\frac{1}{n})\]
anonymous
  • anonymous
Thank you very much, i understood now, thank you

Looking for something else?

Not the answer you are looking for? Search for more explanations.