anonymous
  • anonymous
Convert the rectangular equation to a polar equation. y^2-x^2=7sqrt(x^2+y^2)
Mathematics
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

tkhunny
  • tkhunny
\(x = r\cos(\theta)\) \(y = r\sin(\theta)\) Substitute and Simplify.
anonymous
  • anonymous
i know that.. but what i got was -rcos(2theta) = 7r and it says the answer is r=-7/cos(2theta)
tkhunny
  • tkhunny
Why didn't you say so? If you show your work, we can have a much better conversation much more quickly. \(x^{2} = r^{2}\cos^{2}(\theta)\) \(y^{2} = r^{2}\sin^{2}(\theta)\) \(\sqrt{x^{2} + y^{2}} = r\) And we're left with: \(r(\sin^{2}(x) - cos^{2}(x)) = 7\) Sure enough, exctly as you have it. So, what's the dilemma? Not the form allowed by the exam? Try cos(x) = 1/sec(x)

Looking for something else?

Not the answer you are looking for? Search for more explanations.