UnkleRhaukus
  • UnkleRhaukus
inverse laplace transform
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
ok
UnkleRhaukus
  • UnkleRhaukus
\[\begin{align*} F(p)&=\frac{7p-13}{p^2(p^2+6p+13)}\\ &=\frac{7p-13}{p^2(p^2+6p+9+4)}\\ &=\frac{7p-13}{p^2\big((p+3)^2+4\big)}\\ &=\frac{7}{p\big((p+3)^2+4\big)}-\frac{13}{p^2\big((p+3)^2+4\big)}\\ &=\frac{7}{p}\times\frac1{\big((p+3)^2+4\big)}-\frac{13}{p^2}\times\frac1{\big((p+3)^2+4\big)}\\ f(t)&=\frac72\mathcal L^{-1}\left\{\frac1{p}\times\frac2{\big((p+3)^2+2^2\big)}\right\}-\frac{13}2\mathcal L^{-1}\left\{\frac{1}{p^2}\times\frac2{\big((p+3)^2+2^2\big)}\right\}\\ &=\frac72\int\limits_0^t1\Big|_{t\rightarrow t-u}\times e^{-3u}\sin(2u)\text du-\frac{13}2\int\limits_0^tt\Big|_{t\rightarrow t-u}\times e^{-3u}\sin(2u)\text du\\ &=\frac72\int\limits_0^t e^{-3u}\sin(2u)\text du-\frac{13}2\int\limits_0^t(t-u)e^{-3u}\sin(2u)\text du\\&=\dots \end{align*}\]
UnkleRhaukus
  • UnkleRhaukus
am i doing this right/

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

UnkleRhaukus
  • UnkleRhaukus
how am i to evaluate the integral on the right ?
UnkleRhaukus
  • UnkleRhaukus
is there an easier method (using the convolution theorem)
AccessDenied
  • AccessDenied
Integrals in the form \(\displaystyle \int e^{\alpha x} \sin \beta x \; \text{d}x \) have a general form that can be found through two integration by parts and some algebra with the original integral For \(\displaystyle \int x e^{\alpha x} \sin \beta x \; \text{d}x \), you can find it with the above's formula + cosine's and integration by parts: http://mathbin.net/114299 Only problem is that they seem fairly tedious to apply here...
UnkleRhaukus
  • UnkleRhaukus
agh,
anonymous
  • anonymous
=1/p2+1/p-(p+3)/[(p+3)2+4]-2/[(p+3)2+4]->t+1-e^-3t(cost+sint)
UnkleRhaukus
  • UnkleRhaukus
,
UnkleRhaukus
  • UnkleRhaukus
\[\begin{align*} F(p)&=\frac{7p-13}{p^2(p^2+6p+13)}\\ &=\frac{7p-13}{p^2(p^2+6p+9+4)}\\ &=\frac{7p-13}{p^2\big((p+3)^2+4\big)}\\ &=\frac{7}{p\big((p+3)^2+4\big)}-\frac{13}{p^2\big((p+3)^2+4\big)}\\ &=\frac{7}{p}\times\frac1{\big((p+3)^2+4\big)}-\frac{13}{p^2}\times\frac1{\big((p+3)^2+4\big)}\\ \end{align*}\]\[ \begin{align*} f(t)&=\frac72\mathcal L^{-1}\left\{\frac1{p}\times\frac2{\big((p+3)^2+2^2\big)}\right\}-\frac{13}2\mathcal L^{-1}\left\{\frac{1}{p^2}\times\frac2{\big((p+3)^2+2^2\big)}\right\}\\ &=\frac72\int\limits_0^t1\Big|_{t\rightarrow t-u}\times e^{-3u}\sin(2u)\text du-\frac{13}2\int\limits_0^tt\Big|_{t\rightarrow t-u}\times e^{-3u}\sin(2u)\text du\\ &=\frac72\int\limits_0^t e^{-3u}\sin(2u)\text du-\frac{13}2\int\limits_0^t(t-u)e^{-3u}\sin(2u)\text du\\ &=\left[\frac72\times\frac{e^{-3t}}{2^2+(-3)^2}\Big(-3\sin(2u)-2\cos(2u)\Big)\Big|_0^t\right]-\frac{13t}2\int\limits_0^te^{-3u}\sin(2u)\text du+\frac{13}2\int\limits_0^tue^{-3u}\sin(2u)\text du\\ &=\left[\frac7{26}\times{e^{-3t}}\Big(-3\sin(2t)-2\cos(2t)+2\Big)\right]-\left[\frac{13t}2\times\frac{e^{-3t}}{2^2+(-3)^2}\Big(-3\sin(2u)-2\cos(2u)\Big)\Big|_0^t\right]\\ &\qquad\qquad\qquad\qquad\qquad-\frac{13}2\left[u\int\limits_0^te^{-3u}\sin(2u)\text du\Big|_0^t-\int\int_0^te^{-3u}\sin(2u)\text du\text du\right]\\ &=\left[\frac7{26}{e^{-3t}}\Big(-3\sin(2t)-2\cos(2t)+2\Big)\right]-\left[\frac{t}2{e^{-3t}}\Big(-3\sin(2t)-2\cos(2t)+2\Big)\right]\\ &\qquad\qquad\qquad-\frac{13}2\left[u{e^{-3t}}\Big(-3\sin(2u)-2\cos(2u)\Big)\Big|_0^t-\int{e^{-3t}}\Big(-3\sin(2u)-2\cos(2u)\Big)\text du\right]\\ &=\left[\left(\frac7{26}-\frac t2\right){e^{-3t}}\Big(-3\sin(2t)-2\cos(2t)+2\Big)\right]\\ &\qquad\qquad\qquad-\frac{13}2\left[t{e^{-3t}}\Big(-3\sin(2t)-2\cos(2t)-2\Big)-\int{e^{-3t}}\Big(-3\sin(2u)-2\cos(2u)\Big)\text du\right]\\ &=\left[\left(\frac7{26}-\frac t2-\frac{13t}{2}\right){e^{-3t}}\Big(-3\sin(2t)-2\cos(2t)+2\Big)\right]\\ &\qquad\qquad\qquad-3\int\limits_0^t{e^{-3t}}\sin(2u)\text du-2\int\limits_0^te^{-3t}\cos(2u)\Big)\text du\\ &=\left[\left(\frac7{26}-\frac t2-\frac{13t}{2}\right){e^{-3t}}\Big(-3\sin(2t)-2\cos(2t)+2\Big)\right]\\ &\qquad-3\times\frac{e^{-3t}}{2^2+(-3)^2}\Big(-3\sin(2u)-2\cos(2u)\Big)\Big|_0^t-2\times\frac{e^{-3u}}{2^2+(-3)^2}\left(-3\cos(2u)+2\sin(2u)\right)\Big|_0^t\\ &=\left(\frac7{26}-\frac t2-\frac{13t}{2}+\frac{3}{13}\right){e^{-3t}}\Big(-3\sin(2t)-2\cos(2t)+2\Big)-\frac{2}{13}e^{-3t}\left(-3\cos(2t)+2\sin(2t)-3\right)\\ &=\left[\left(\frac12-7t\right)\Big(-3\sin(2t)-2\cos(2t)+2\Big)-\frac{2}{13}\Big(-3\cos(2t)+2\sin(2t)-3\Big)\right]e^{-3t}\\ &=\left[\Big(\frac12-7t-\frac4{13}\Big)\sin(2t)+\Big(-1+14t\Big)\cos(2t)+\Big(1-14t+\frac6{13}\Big)\right]e^{-3t}\\ &=\left[\Big(\frac5{26}-7t\Big)\sin(2t)+\Big(-1+14t\Big)(1-2\sin^2t)+\Big(\frac{19}{13}-14t\Big)\right]e^{-3t}\\ &=\left[\Big(\frac5{26}-7t\Big)\sin(2t)+14t\sin^2t+\Big(\frac{6}{13}\Big)\right]e^{-3t}\\ \\ \end{align*}\]
anonymous
  • anonymous
=1/p2+1/p-(p+3)/[(p+3)2+4]-2/[(p+3)2+4]->t+1-e^-3t(cos2t+sin2t) I guess you wrong.
anonymous
  • anonymous
|dw:1353823095307:dw|
anonymous
  • anonymous
|dw:1353823272401:dw|
anonymous
  • anonymous
|dw:1353823506027:dw|
anonymous
  • anonymous
|dw:1353823547140:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.