Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
ok
\[\begin{align*} F(p)&=\frac{7p-13}{p^2(p^2+6p+13)}\\ &=\frac{7p-13}{p^2(p^2+6p+9+4)}\\ &=\frac{7p-13}{p^2\big((p+3)^2+4\big)}\\ &=\frac{7}{p\big((p+3)^2+4\big)}-\frac{13}{p^2\big((p+3)^2+4\big)}\\ &=\frac{7}{p}\times\frac1{\big((p+3)^2+4\big)}-\frac{13}{p^2}\times\frac1{\big((p+3)^2+4\big)}\\ f(t)&=\frac72\mathcal L^{-1}\left\{\frac1{p}\times\frac2{\big((p+3)^2+2^2\big)}\right\}-\frac{13}2\mathcal L^{-1}\left\{\frac{1}{p^2}\times\frac2{\big((p+3)^2+2^2\big)}\right\}\\ &=\frac72\int\limits_0^t1\Big|_{t\rightarrow t-u}\times e^{-3u}\sin(2u)\text du-\frac{13}2\int\limits_0^tt\Big|_{t\rightarrow t-u}\times e^{-3u}\sin(2u)\text du\\ &=\frac72\int\limits_0^t e^{-3u}\sin(2u)\text du-\frac{13}2\int\limits_0^t(t-u)e^{-3u}\sin(2u)\text du\\&=\dots \end{align*}\]
am i doing this right/

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

how am i to evaluate the integral on the right ?
is there an easier method (using the convolution theorem)
Integrals in the form \(\displaystyle \int e^{\alpha x} \sin \beta x \; \text{d}x \) have a general form that can be found through two integration by parts and some algebra with the original integral For \(\displaystyle \int x e^{\alpha x} \sin \beta x \; \text{d}x \), you can find it with the above's formula + cosine's and integration by parts: http://mathbin.net/114299 Only problem is that they seem fairly tedious to apply here...
agh,
=1/p2+1/p-(p+3)/[(p+3)2+4]-2/[(p+3)2+4]->t+1-e^-3t(cost+sint)
,
\[\begin{align*} F(p)&=\frac{7p-13}{p^2(p^2+6p+13)}\\ &=\frac{7p-13}{p^2(p^2+6p+9+4)}\\ &=\frac{7p-13}{p^2\big((p+3)^2+4\big)}\\ &=\frac{7}{p\big((p+3)^2+4\big)}-\frac{13}{p^2\big((p+3)^2+4\big)}\\ &=\frac{7}{p}\times\frac1{\big((p+3)^2+4\big)}-\frac{13}{p^2}\times\frac1{\big((p+3)^2+4\big)}\\ \end{align*}\]\[ \begin{align*} f(t)&=\frac72\mathcal L^{-1}\left\{\frac1{p}\times\frac2{\big((p+3)^2+2^2\big)}\right\}-\frac{13}2\mathcal L^{-1}\left\{\frac{1}{p^2}\times\frac2{\big((p+3)^2+2^2\big)}\right\}\\ &=\frac72\int\limits_0^t1\Big|_{t\rightarrow t-u}\times e^{-3u}\sin(2u)\text du-\frac{13}2\int\limits_0^tt\Big|_{t\rightarrow t-u}\times e^{-3u}\sin(2u)\text du\\ &=\frac72\int\limits_0^t e^{-3u}\sin(2u)\text du-\frac{13}2\int\limits_0^t(t-u)e^{-3u}\sin(2u)\text du\\ &=\left[\frac72\times\frac{e^{-3t}}{2^2+(-3)^2}\Big(-3\sin(2u)-2\cos(2u)\Big)\Big|_0^t\right]-\frac{13t}2\int\limits_0^te^{-3u}\sin(2u)\text du+\frac{13}2\int\limits_0^tue^{-3u}\sin(2u)\text du\\ &=\left[\frac7{26}\times{e^{-3t}}\Big(-3\sin(2t)-2\cos(2t)+2\Big)\right]-\left[\frac{13t}2\times\frac{e^{-3t}}{2^2+(-3)^2}\Big(-3\sin(2u)-2\cos(2u)\Big)\Big|_0^t\right]\\ &\qquad\qquad\qquad\qquad\qquad-\frac{13}2\left[u\int\limits_0^te^{-3u}\sin(2u)\text du\Big|_0^t-\int\int_0^te^{-3u}\sin(2u)\text du\text du\right]\\ &=\left[\frac7{26}{e^{-3t}}\Big(-3\sin(2t)-2\cos(2t)+2\Big)\right]-\left[\frac{t}2{e^{-3t}}\Big(-3\sin(2t)-2\cos(2t)+2\Big)\right]\\ &\qquad\qquad\qquad-\frac{13}2\left[u{e^{-3t}}\Big(-3\sin(2u)-2\cos(2u)\Big)\Big|_0^t-\int{e^{-3t}}\Big(-3\sin(2u)-2\cos(2u)\Big)\text du\right]\\ &=\left[\left(\frac7{26}-\frac t2\right){e^{-3t}}\Big(-3\sin(2t)-2\cos(2t)+2\Big)\right]\\ &\qquad\qquad\qquad-\frac{13}2\left[t{e^{-3t}}\Big(-3\sin(2t)-2\cos(2t)-2\Big)-\int{e^{-3t}}\Big(-3\sin(2u)-2\cos(2u)\Big)\text du\right]\\ &=\left[\left(\frac7{26}-\frac t2-\frac{13t}{2}\right){e^{-3t}}\Big(-3\sin(2t)-2\cos(2t)+2\Big)\right]\\ &\qquad\qquad\qquad-3\int\limits_0^t{e^{-3t}}\sin(2u)\text du-2\int\limits_0^te^{-3t}\cos(2u)\Big)\text du\\ &=\left[\left(\frac7{26}-\frac t2-\frac{13t}{2}\right){e^{-3t}}\Big(-3\sin(2t)-2\cos(2t)+2\Big)\right]\\ &\qquad-3\times\frac{e^{-3t}}{2^2+(-3)^2}\Big(-3\sin(2u)-2\cos(2u)\Big)\Big|_0^t-2\times\frac{e^{-3u}}{2^2+(-3)^2}\left(-3\cos(2u)+2\sin(2u)\right)\Big|_0^t\\ &=\left(\frac7{26}-\frac t2-\frac{13t}{2}+\frac{3}{13}\right){e^{-3t}}\Big(-3\sin(2t)-2\cos(2t)+2\Big)-\frac{2}{13}e^{-3t}\left(-3\cos(2t)+2\sin(2t)-3\right)\\ &=\left[\left(\frac12-7t\right)\Big(-3\sin(2t)-2\cos(2t)+2\Big)-\frac{2}{13}\Big(-3\cos(2t)+2\sin(2t)-3\Big)\right]e^{-3t}\\ &=\left[\Big(\frac12-7t-\frac4{13}\Big)\sin(2t)+\Big(-1+14t\Big)\cos(2t)+\Big(1-14t+\frac6{13}\Big)\right]e^{-3t}\\ &=\left[\Big(\frac5{26}-7t\Big)\sin(2t)+\Big(-1+14t\Big)(1-2\sin^2t)+\Big(\frac{19}{13}-14t\Big)\right]e^{-3t}\\ &=\left[\Big(\frac5{26}-7t\Big)\sin(2t)+14t\sin^2t+\Big(\frac{6}{13}\Big)\right]e^{-3t}\\ \\ \end{align*}\]
=1/p2+1/p-(p+3)/[(p+3)2+4]-2/[(p+3)2+4]->t+1-e^-3t(cos2t+sin2t) I guess you wrong.
|dw:1353823095307:dw|
|dw:1353823272401:dw|
|dw:1353823506027:dw|
|dw:1353823547140:dw|

Not the answer you are looking for?

Search for more explanations.

Ask your own question