Quantcast

A community for students. Sign up today!

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

UnkleRhaukus

  • 2 years ago

inverse laplace transform

  • This Question is Closed
  1. math>philosophy
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    ok

  2. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    \[\begin{align*} F(p)&=\frac{7p-13}{p^2(p^2+6p+13)}\\ &=\frac{7p-13}{p^2(p^2+6p+9+4)}\\ &=\frac{7p-13}{p^2\big((p+3)^2+4\big)}\\ &=\frac{7}{p\big((p+3)^2+4\big)}-\frac{13}{p^2\big((p+3)^2+4\big)}\\ &=\frac{7}{p}\times\frac1{\big((p+3)^2+4\big)}-\frac{13}{p^2}\times\frac1{\big((p+3)^2+4\big)}\\ f(t)&=\frac72\mathcal L^{-1}\left\{\frac1{p}\times\frac2{\big((p+3)^2+2^2\big)}\right\}-\frac{13}2\mathcal L^{-1}\left\{\frac{1}{p^2}\times\frac2{\big((p+3)^2+2^2\big)}\right\}\\ &=\frac72\int\limits_0^t1\Big|_{t\rightarrow t-u}\times e^{-3u}\sin(2u)\text du-\frac{13}2\int\limits_0^tt\Big|_{t\rightarrow t-u}\times e^{-3u}\sin(2u)\text du\\ &=\frac72\int\limits_0^t e^{-3u}\sin(2u)\text du-\frac{13}2\int\limits_0^t(t-u)e^{-3u}\sin(2u)\text du\\&=\dots \end{align*}\]

  3. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    am i doing this right/

  4. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    how am i to evaluate the integral on the right ?

  5. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    is there an easier method (using the convolution theorem)

  6. AccessDenied
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Integrals in the form \(\displaystyle \int e^{\alpha x} \sin \beta x \; \text{d}x \) have a general form that can be found through two integration by parts and some algebra with the original integral For \(\displaystyle \int x e^{\alpha x} \sin \beta x \; \text{d}x \), you can find it with the above's formula + cosine's and integration by parts: http://mathbin.net/114299 Only problem is that they seem fairly tedious to apply here...

  7. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    agh,

  8. mahmit2012
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    =1/p2+1/p-(p+3)/[(p+3)2+4]-2/[(p+3)2+4]->t+1-e^-3t(cost+sint)

  9. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    ,

  10. UnkleRhaukus
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    \[\begin{align*} F(p)&=\frac{7p-13}{p^2(p^2+6p+13)}\\ &=\frac{7p-13}{p^2(p^2+6p+9+4)}\\ &=\frac{7p-13}{p^2\big((p+3)^2+4\big)}\\ &=\frac{7}{p\big((p+3)^2+4\big)}-\frac{13}{p^2\big((p+3)^2+4\big)}\\ &=\frac{7}{p}\times\frac1{\big((p+3)^2+4\big)}-\frac{13}{p^2}\times\frac1{\big((p+3)^2+4\big)}\\ \end{align*}\]\[ \begin{align*} f(t)&=\frac72\mathcal L^{-1}\left\{\frac1{p}\times\frac2{\big((p+3)^2+2^2\big)}\right\}-\frac{13}2\mathcal L^{-1}\left\{\frac{1}{p^2}\times\frac2{\big((p+3)^2+2^2\big)}\right\}\\ &=\frac72\int\limits_0^t1\Big|_{t\rightarrow t-u}\times e^{-3u}\sin(2u)\text du-\frac{13}2\int\limits_0^tt\Big|_{t\rightarrow t-u}\times e^{-3u}\sin(2u)\text du\\ &=\frac72\int\limits_0^t e^{-3u}\sin(2u)\text du-\frac{13}2\int\limits_0^t(t-u)e^{-3u}\sin(2u)\text du\\ &=\left[\frac72\times\frac{e^{-3t}}{2^2+(-3)^2}\Big(-3\sin(2u)-2\cos(2u)\Big)\Big|_0^t\right]-\frac{13t}2\int\limits_0^te^{-3u}\sin(2u)\text du+\frac{13}2\int\limits_0^tue^{-3u}\sin(2u)\text du\\ &=\left[\frac7{26}\times{e^{-3t}}\Big(-3\sin(2t)-2\cos(2t)+2\Big)\right]-\left[\frac{13t}2\times\frac{e^{-3t}}{2^2+(-3)^2}\Big(-3\sin(2u)-2\cos(2u)\Big)\Big|_0^t\right]\\ &\qquad\qquad\qquad\qquad\qquad-\frac{13}2\left[u\int\limits_0^te^{-3u}\sin(2u)\text du\Big|_0^t-\int\int_0^te^{-3u}\sin(2u)\text du\text du\right]\\ &=\left[\frac7{26}{e^{-3t}}\Big(-3\sin(2t)-2\cos(2t)+2\Big)\right]-\left[\frac{t}2{e^{-3t}}\Big(-3\sin(2t)-2\cos(2t)+2\Big)\right]\\ &\qquad\qquad\qquad-\frac{13}2\left[u{e^{-3t}}\Big(-3\sin(2u)-2\cos(2u)\Big)\Big|_0^t-\int{e^{-3t}}\Big(-3\sin(2u)-2\cos(2u)\Big)\text du\right]\\ &=\left[\left(\frac7{26}-\frac t2\right){e^{-3t}}\Big(-3\sin(2t)-2\cos(2t)+2\Big)\right]\\ &\qquad\qquad\qquad-\frac{13}2\left[t{e^{-3t}}\Big(-3\sin(2t)-2\cos(2t)-2\Big)-\int{e^{-3t}}\Big(-3\sin(2u)-2\cos(2u)\Big)\text du\right]\\ &=\left[\left(\frac7{26}-\frac t2-\frac{13t}{2}\right){e^{-3t}}\Big(-3\sin(2t)-2\cos(2t)+2\Big)\right]\\ &\qquad\qquad\qquad-3\int\limits_0^t{e^{-3t}}\sin(2u)\text du-2\int\limits_0^te^{-3t}\cos(2u)\Big)\text du\\ &=\left[\left(\frac7{26}-\frac t2-\frac{13t}{2}\right){e^{-3t}}\Big(-3\sin(2t)-2\cos(2t)+2\Big)\right]\\ &\qquad-3\times\frac{e^{-3t}}{2^2+(-3)^2}\Big(-3\sin(2u)-2\cos(2u)\Big)\Big|_0^t-2\times\frac{e^{-3u}}{2^2+(-3)^2}\left(-3\cos(2u)+2\sin(2u)\right)\Big|_0^t\\ &=\left(\frac7{26}-\frac t2-\frac{13t}{2}+\frac{3}{13}\right){e^{-3t}}\Big(-3\sin(2t)-2\cos(2t)+2\Big)-\frac{2}{13}e^{-3t}\left(-3\cos(2t)+2\sin(2t)-3\right)\\ &=\left[\left(\frac12-7t\right)\Big(-3\sin(2t)-2\cos(2t)+2\Big)-\frac{2}{13}\Big(-3\cos(2t)+2\sin(2t)-3\Big)\right]e^{-3t}\\ &=\left[\Big(\frac12-7t-\frac4{13}\Big)\sin(2t)+\Big(-1+14t\Big)\cos(2t)+\Big(1-14t+\frac6{13}\Big)\right]e^{-3t}\\ &=\left[\Big(\frac5{26}-7t\Big)\sin(2t)+\Big(-1+14t\Big)(1-2\sin^2t)+\Big(\frac{19}{13}-14t\Big)\right]e^{-3t}\\ &=\left[\Big(\frac5{26}-7t\Big)\sin(2t)+14t\sin^2t+\Big(\frac{6}{13}\Big)\right]e^{-3t}\\ \\ \end{align*}\]

  11. mahmit2012
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    =1/p2+1/p-(p+3)/[(p+3)2+4]-2/[(p+3)2+4]->t+1-e^-3t(cos2t+sin2t) I guess you wrong.

  12. mahmit2012
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    |dw:1353823095307:dw|

  13. mahmit2012
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    |dw:1353823272401:dw|

  14. mahmit2012
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    |dw:1353823506027:dw|

  15. mahmit2012
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    |dw:1353823547140:dw|

  16. Not the answer you are looking for?
    Search for more explanations.

    Search OpenStudy
    • Attachments:

Ask your own question

Ask a Question
Find more explanations on OpenStudy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.