Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Please help:) Find the relation between \(\alpha\), \(\beta\), \(\gamma\) in the order that \(\alpha+\beta x+\gamma x^2\) may be expressible in one term in the factorial notation.

See more answers at
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer


To see the expert answer you'll need to create a free account at Brainly

maybe you can google a similiar question, and i will reply
ok this is not what i am use to, algebra. what are you studying? what book
engineering mathematics by amit k awasthi

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

hmm no. I am nt studying any particular book. this question was given to me by my lecturer.
what is a factorial polynomial, can you give me a definition,+%CE%B2,+%CE%B3+in+the+order+that+%CE%B1%2B%CE%B2x%2B%CE%B3x2+may+be+expressible+in+one+term+in+the+factorial+notation.&source=bl&ots=HBfAzq833r&sig=dcBssAwJZJpHrv1BK7f1RAZH1no&hl=en&sa=X&ei=eIOwUNHfEcSx0AH-nIDIBw&ved=0CC8Q6AEwAA#v=onepage&q=Find%20the%20relation%20between%20%CE%B1%2C%20%CE%B2%2C%20%CE%B3%20in%20the%20order%20that%20%CE%B1%2B%CE%B2x%2B%CE%B3x2%20may%20be%20expressible%20in%20one%20term%20in%20the%20factorial%20notation.&f=false
A factorial polynomial \(x^p\) is defined as \(x^p=x(x-h)(x-2h)--------------(x-(p-1)h)\) where p is a positive integer.
so, here take p= 2, a+bx+cx^2=x(x-h) and find relation between a,b,c.
but i am not sure...
p=2 to make factorial polynomial as quadratic
jst a sec. am workng on it
I am nt sure if what I have done is right. a=0, b=-h and c=1. am I right @hartnn?
but that doesn't give u relation between them.......
ya i am greatly confused
When I googled my question i found this link. page number 229. i am trying to understand it
1 Attachment
Suppose \(\alpha+\beta x+\gamma x^2=(u+vx)^2\). This means \(u^2+2uvx+v^2x^2=\alpha+\beta x+\gamma x^2.\) Equating coefficients, we have that \(u^2=\alpha\), \(2uv=\beta\), and \(v^2=\gamma\). These three equations imply \(2\sqrt{\alpha\gamma}=\beta\).
OH. You're doing Knuth-esque math. Okay, one second.
The above answer is technically true, but it's not what the professor is looking for. I'll explain what he's doing in a moment . . .
It would appear your professor made a significant error. He's using what's called the rising factorial and incorrectly at that. (He or she, whoever.) The following is the definition of the notation \(a^{(n)}\): \[ a^{(n)}=a(a+1)(a+2)\cdots(a+n-1)=\prod_{1\le i\le n}\left(a+i-1\right).\] What your professor wants, I believe, is the following: Let \(\alpha+\beta x+\gamma x^2=(u+vx)^{(2)}\). Then, following the definition of the rising factorial, we have \[(u+vx)^{(2)}=\prod_{1 \le i \le 2}\left(u+vx+i-1\right)=(u+vx)(u+vx+1).\] Expanding that our, we get \[(u+vx)(u+vx+1)=u^2+uvx+u+uvx+v^2x^2+vx=u^2+u+2uvx+vx+v^2x^2.\] Since we have let \(\alpha+\beta x+\gamma x^2=(u+vx)^{(2)}\), we have that \(\alpha+\beta x+\gamma x^2=(u^2+u)+(2uv+v)x+v^2x^2.\) From this we can conclude (by "equating coefficients") \(\alpha=u^2+u\), \(\beta=2uv+v\), and \(\gamma=v^2\). To search for a relation between our three variables, substitue \(\pm \sqrt{\gamma}\) for \(v\): \(\beta=\pm2u\sqrt{\gamma}\pm\sqrt{\gamma}\). Solving this equation for \(u\), we see that \(u=\frac{\beta \pm \gamma}{\pm 2\sqrt{\gamma}}.\) Substitution of this into \(\alpha=u^2+u\) reveals \[\alpha=\frac{(\beta\pm \gamma)^2}{4\gamma}+\frac{\beta \pm \gamma}{\pm 2\sqrt{\gamma}},\] giving us the desired: a relation between \(\alpha, \beta\) and \(\gamma\).
Thank you soooo much for the explanation:)
is that way wrong? So which method should I use? Actually the answer I posted is not the answer my professor gave me. Actually she didnt give us any answer yet
I don't think the way was entirely wrong. It's just that the author misunderstood the definition of \(a^{(n)}\). You know what I mean?
hmm no. sorry
When the writer of that post said \[(a+bx)^{(2)}=(a+bx)[a+b(x-1)],\] they were wrong and this messed up the entire problem. However, what they were _trying_ to do was right.
Does that make things more clear?
ya it is. thank u soooo much:)
You're welcome. But, I'd like to thank you for the interesting problem!
Let me go ahead and recommend--if you're getting problems like this a lot--Donald E. Knuth's Concrete Mathematics. In there, there's all kinds of this craziness: falling factorials, rising factorials, ceiling functions, floor functions, summations, discrete calculus, etc. It seems to directly pertain to what you're doing, but I can't be certain.
Thanks a lott:)
You're welcome! Have a wonderful weekend.
Thanks nd wish u the same:)

Not the answer you are looking for?

Search for more explanations.

Ask your own question