kaiz122
  • kaiz122
help me here. please
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
kaiz122
  • kaiz122
\[\lim_{x \rightarrow +\infty} (1+ \frac{k}{x})^{x}\]
anonymous
  • anonymous
any guesses?
kaiz122
  • kaiz122
it's in indeterminate form \[1^{\infty}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
since on definition of \(e\) is \(\lim_{x\to \infty}(1+\frac{1}{x})^x\) it will be no surprise that \[\lim_{x\to \infty}\left(1+\frac{k}{x}\right)^x=e^k\]
anonymous
  • anonymous
if that is an unacceptable answer, take the log, take the limit, which will be \(k\) and then exponentiate to get \(e^k\)
anonymous
  • anonymous
start with \[x\ln(1+\frac{1}{x})\] which is now \(\infty\times 0\) then the usual trick is to rewrite as \[\frac{\ln(1+\frac{1}{x})}{\frac{1}{x}}\] so it is now \(\frac{0}{0}\) and then use l'hopital
kaiz122
  • kaiz122
let \[y=(1+\frac{k}{x})^{x}\] \[\ln{y} =x\ln(1+\frac{k}{x})\] then, \[\lim_{x \rightarrow +\infty} x \ln (1+\frac{k}{x})\]
anonymous
  • anonymous
yup then go to \[\frac{\ln(1+\frac{k}{x})}{\frac{1}{x}}\] and you should be good to go
kaiz122
  • kaiz122
=0 *(+Infinity)
anonymous
  • anonymous
right rewrite as i did above to get \(\frac{0}{0}\)
kaiz122
  • kaiz122
we can rewrite it to this form \[\lim_{x \rightarrow +\infty} \frac{\ln(1+ \frac{k}{x})}{\frac{1}{x}}\]
kaiz122
  • kaiz122
=\[\frac{0}{0}\]
kaiz122
  • kaiz122
should we use the L' Hospital Rule now?
anonymous
  • anonymous
yes
kaiz122
  • kaiz122
what's the derivative of \[\ln (1+\frac{k}{x})?\] is it \[\frac{x^{2}}{(x+k)^{2}}?\]
phi
  • phi
no.
kaiz122
  • kaiz122
ok so it's \[\frac{-k}{x^{2}+kx}\]
anonymous
  • anonymous
u know 1^infinite will be =o
kaiz122
  • kaiz122
i don't think it is.

Looking for something else?

Not the answer you are looking for? Search for more explanations.