Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

Solve the equation! 3 tan^3θ = tan θ

See more answers at
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer


To see the expert answer you'll need to create a free account at Brainly

Just like you used to solve polynomials back in algebra. Collecte everything to one side. Factor everything. Give it a go!
lol dont need to go that far. let x = tan(theta), then 3x^3 = x, so either x = 0, or you can divide x from both sides to get: 3x^2 = 1 so x can be 0, 1/sqrt(3), or -1/sqrt(3).
In other words, collect and factor. Of course, you should solve the actual problem by finding the angle that gives these tangents.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

now I need to find all real solutions with k being any integer.
You have \(\tan(\theta) = 0\), \(\tan(\theta) = \dfrac{1}{\sqrt{3}}\), and \(\tan(\theta) = \dfrac{-1}{\sqrt{3}}\). Track them down.
ok, so...for tan(θ)=0 I get 0 and pi. for tan(θ)=1/√3 I get pi/6 and 7pi/6. And for tan(θ)=−1/√3 I get 5pi/6 and 11pi/6. how do I know if I would add pi k to each or 2pi k?

Not the answer you are looking for?

Search for more explanations.

Ask your own question