anonymous
  • anonymous
Solve the equation! 3 tan^3θ = tan θ
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
tkhunny
  • tkhunny
Just like you used to solve polynomials back in algebra. Collecte everything to one side. Factor everything. Give it a go!
anonymous
  • anonymous
lol dont need to go that far. let x = tan(theta), then 3x^3 = x, so either x = 0, or you can divide x from both sides to get: 3x^2 = 1 so x can be 0, 1/sqrt(3), or -1/sqrt(3).
tkhunny
  • tkhunny
In other words, collect and factor. Of course, you should solve the actual problem by finding the angle that gives these tangents.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
now I need to find all real solutions with k being any integer.
tkhunny
  • tkhunny
You have \(\tan(\theta) = 0\), \(\tan(\theta) = \dfrac{1}{\sqrt{3}}\), and \(\tan(\theta) = \dfrac{-1}{\sqrt{3}}\). Track them down.
anonymous
  • anonymous
ok, so...for tan(θ)=0 I get 0 and pi. for tan(θ)=1/√3 I get pi/6 and 7pi/6. And for tan(θ)=−1/√3 I get 5pi/6 and 11pi/6. how do I know if I would add pi k to each or 2pi k?
lopus
  • lopus
|dw:1353819049038:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.