Find all distinct roots(real or complex) of z^2 + (9+3i)z + (24+11i) in the form a+bi. Hint: You may have to complete the square

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find all distinct roots(real or complex) of z^2 + (9+3i)z + (24+11i) in the form a+bi. Hint: You may have to complete the square

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

http://answers.yahoo.com/question/index?qid=20121124223053AAchfPc the bottom explanation of this link might be it, but i dont understand it
have you figured anything out?
\[\large z^2+(9+3i)z+(24-11i)=0\]\[\large z^2+(9+3i)z=-(24-11i)\]to complete squares, add (b/2)^2 to both sides, where b=9+3i \[\large z^2+(9+3i)z+\left( \frac{ 9+3i }{ 2 } \right)^2=-(24-11i)+\left( \frac{ 9+3i }{ 2 } \right)^2\]

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

yeah im at this step... what do you do next?
\[(z + (\frac{ 9 + 3i }{ 2 }))^2 = -24 + 11i + 18 +\frac{ 27i }{ 2 }\]
\[z + (\frac{ 9+3i }{ 2 }) = \pm \sqrt{\frac{ -12 + 5i}{ 2 }} \]
i dunno, lol
i dont get how the person completed the square in the yahoo link..
\[z = -(\frac{ 9+3i }{ 2}) \pm \sqrt{\frac{ -12 + 5i }{ 2 }}\]
it would be so much easier if the square root wasnt there...we could just add them up easily
from the yahoo answers link: z² + (2−4i)z = (11+10i) z² + (2−4i)z + (-3 -4i) = (11+10i) + (-3 -4i)
what i dont get is where the (-3-4i) comes from

Not the answer you are looking for?

Search for more explanations.

Ask your own question