• anonymous
Are all \[y= \frac{1}{x^{2n-1}} \] hyperbolas?
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • katieb
I got my questions answered at in under 10 minutes. Go to now for free help!
  • asnaseer
I don't think so. I believe the name hyperbola is given only to one of the conic sections. It's equation can be written in one of these forms:\[\frac{x^2}{a^2}-\frac{y^2}{b^2}=1\qquad\text{East-West Hyprbola}\]\[\frac{y^2}{a^2}-\frac{x^2}{b^2}=1\qquad\text{North-South Hyprbola}\]\[xy=m\qquad\text{Rectangular Hyperbola}\]
  • anonymous
Thanks- it seemed as if conic-sections-wise the higher powers corresponded to moving the slicer to the right.

Looking for something else?

Not the answer you are looking for? Search for more explanations.