Ace school

with brainly

  • Get help from millions of students
  • Learn from experts with step-by-step explanations
  • Level-up by helping others

A community for students.

Do there exist scalars k and l such that the vectors u = (2,k,6) , v = (l,5,3) , and w = (1,2,3) are mutually orthogonal with respect to the Euclidean inner product?

Linear Algebra
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

The answer says no, but I originally thought that since k and l were u2 and v1 that itonly matters the 3rd spot, but I realized that you do (u1v1w1) +etc....
Isn't it possible that we could find something = 0? Since that is what orthagonal means.
Oh weait can scalars be negative?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

if all three vectors were orthogonal, then:\[u\cdot w = 0\Longrightarrow (2)(1)+(k)(2)+(6)(3)=0\]\[2+2k+18=0\Longrightarrow 2k=-20\Longrightarrow k=-10\]Similarly,since v and w are orthogonal, we get that l must be -19.
yes scalars can be negative.
So we are actually solving for them...? I thought it was any number..
or those would be the numbers to = 0?
Since we are asking "does there exist", the question is asking "is there any one such number k and l." Its not the same as "for all/any k and l."
It doens't say 1 though? Or does that "mutually orthagonal" mean something?
Do there exist scalars k and l such that the vectors
If u and w are orthogonal, then k would have to be -10. If k is any other number, they wont be orthogonal since the inner/dot product wouldnt come out to zero.
mutually orthogonal means that all three vectors are perpendicular to each other.
The thing is, there is no way these three vectors can be mutually orthogonal. Since k would have to be -10, and l would have to be -19. Then u and v wouldnt be orhtogonal. There is no way to get all three to be perpendicular at the same time.
I see, makes sense, thanks!

Not the answer you are looking for?

Search for more explanations.

Ask your own question