Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

The square root of two is a rational number.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

False
True or false?
Sorry I meant it is an irrational number. So it is false.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Thank you!
prove by contradiction , assuming the square root of two is rational , it can be written as a ratio of natural numbers that have no common factors p,q say \[√2=p/q\] \[2=p^2/q^2\]\[2q^2=p^2\] this implies \(p^2\) is even if \(p^2\) is even then \(p\) is even if \(p \) is even it can be written as two times another natural number \(r\) \[p=2r\] \[2q^2=p^2=(2r)^2=4r^2\]\[q^2=2r^2\] which similarly implies that \(q\) is even With \(p,q\) both even the natural numbers necessarily have a common factor of two , which contradicts the statement of rationality, \[\sqrt2\not\in\text{rational numbers}\] \[\square\]
So in order to be rational the none of them should be even or at least one of them should be even and the other not even in order not to have a common factor of 2? Can you please explain this situation to me if you may?
if the numer is rational there must be a way to express it as a ratio of (relatively prime) natural numbers, (ie no common factors)

Not the answer you are looking for?

Search for more explanations.

Ask your own question