Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

Andreslvc

  • 3 years ago

HELP! calculate the lenght of the curve: x^(2/3)+y^(2/3)=9 thanks

  • This Question is Open
  1. sankaran.sree
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    71 units...i guess..

  2. Arcturas
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    Well you need to get the limits first. Are they given? Get your equation into the form y=f(x) then apply the equation \[S= \int\limits_{a}^{b} \sqrt{(1+(dy/dx)^2) } dx\]

  3. kyosuke
    • 3 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Mira, te recomiendo parametrizar tu ecuación de esta forma: x=27cos^3 (t) y=27sin^3(t) si los reemplazas uno con otro obtienes lo mismo ( x ^ (2/3) + y ^ (2/3) = 9) luego aplicas la integral para calcular la longitud \[4*\int\limits_{0}^{\pi/2} \sqrt {(27cos^{3} t)\prime^2+(27sen ^{3}t )\prime^2} dt\] si integras eso te debe salir 162 suerte.

  4. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Sign Up
Find more explanations on OpenStudy
Privacy Policy