Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

HELP! calculate the lenght of the curve: x^(2/3)+y^(2/3)=9 thanks

MIT 18.02 Multivariable Calculus, Fall 2007
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SEE EXPERT ANSWER

To see the expert answer you'll need to create a free account at Brainly

71 units...i guess..
Well you need to get the limits first. Are they given? Get your equation into the form y=f(x) then apply the equation \[S= \int\limits_{a}^{b} \sqrt{(1+(dy/dx)^2) } dx\]
Mira, te recomiendo parametrizar tu ecuaciĆ³n de esta forma: x=27cos^3 (t) y=27sin^3(t) si los reemplazas uno con otro obtienes lo mismo ( x ^ (2/3) + y ^ (2/3) = 9) luego aplicas la integral para calcular la longitud \[4*\int\limits_{0}^{\pi/2} \sqrt {(27cos^{3} t)\prime^2+(27sen ^{3}t )\prime^2} dt\] si integras eso te debe salir 162 suerte.

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

Not the answer you are looking for?

Search for more explanations.

Ask your own question