Quantcast

Got Homework?

Connect with other students for help. It's a free community.

  • across
    MIT Grad Student
    Online now
  • laura*
    Helped 1,000 students
    Online now
  • Hero
    College Math Guru
    Online now

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

henpen

\[Ly=h(x)\] f is the linear combination of all the functions that are L(function)=0, so that \[Lf=0\] And g is ONE OF the functions that do this: \[Lg=h(x)\] Why is the general (i.e. total and only (minus degrees of freedom for unknowable coefficients)- is this the correct definition?) solution for y equal to this: \[y=f+g\] I understand that it WORKS, but I've read in many places to stop here, as I've found the 'general' solution (whatever that really means) despite only using 1 out of potentially many g that do this \[L(function)=h(x)\]? Does this rule only apply to a subset of differential equations, or are all other g not independent from out 1st g?

  • one year ago
  • one year ago

  • This Question is Open
    • Attachments:

See more questions >>>

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.