ksaimouli
  • ksaimouli
(a)increasing (b) decreasing (c)local extreme values
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ksaimouli
  • ksaimouli
|dw:1353980630180:dw|
ksaimouli
  • ksaimouli
i took derivative =0 i got \[+-\sqrt{2}\]
anonymous
  • anonymous
Take the derivative, find the critical points, draw a number line, find y values of your critical points, determine local extrema and increasing/decreasing intervals.

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ksaimouli
  • ksaimouli
should i need to include the domain restriciton in numberline @Brittni0605
anonymous
  • anonymous
If a restriction was given than yes.
ksaimouli
  • ksaimouli
+-2
ksaimouli
  • ksaimouli
no restriction is given
ksaimouli
  • ksaimouli
when i take derivative i set denominator=0 i got +-2
anonymous
  • anonymous
Ok, so your domain is negative infinity to infinity
ksaimouli
  • ksaimouli
yup
ksaimouli
  • ksaimouli
|dw:1353980936825:dw|
ksaimouli
  • ksaimouli
this is the derivative of teh funciton
anonymous
  • anonymous
Ok.
ksaimouli
  • ksaimouli
so the critical points are|dw:1353981108528:dw|
anonymous
  • anonymous
Yes.
ksaimouli
  • ksaimouli
should need to set the denominator to find domain of the function |dw:1353981161255:dw|
ksaimouli
  • ksaimouli
|dw:1353981180565:dw|
anonymous
  • anonymous
Yes, good number line
ksaimouli
  • ksaimouli
or|dw:1353981212350:dw|
ksaimouli
  • ksaimouli
that one or this one so confused
anonymous
  • anonymous
The first pic.
anonymous
  • anonymous
You're critical values are the x values where the derivative =0 or where the derivative doesnt exist.
ksaimouli
  • ksaimouli
then if i choose -3 to check whether it is + or - their is domain error
anonymous
  • anonymous
By setting the numerator equal to 0, you found where the derivative equals . By setting the denominator equal to 0, you found where the derivative doesnt exist
ksaimouli
  • ksaimouli
yup i know that one i set the number line can u plz figure out the +and- values
ksaimouli
  • ksaimouli
|dw:1353981465522:dw|
anonymous
  • anonymous
|dw:1353981469116:dw|
ksaimouli
  • ksaimouli
so increasing=|dw:1353981723064:dw|
ksaimouli
  • ksaimouli
dec|dw:1353981745781:dw|
anonymous
  • anonymous
Yes.
anonymous
  • anonymous
They didnt give you a domain, but bc of the type of prob, a domain was determined. You found out the function only exists between (-2,2)
ksaimouli
  • ksaimouli
max root2 and min -root2
ksaimouli
  • ksaimouli
so function exists (-2,2) but min and max at end enpoints undefinied am i right but it is good to check the domain
anonymous
  • anonymous
Um, you have to find the y values of your critical points
ksaimouli
  • ksaimouli
i know that i simple
ksaimouli
  • ksaimouli
esay
anonymous
  • anonymous
Lol, ok.
ksaimouli
  • ksaimouli
i hate typo
ksaimouli
  • ksaimouli
thx
anonymous
  • anonymous
Np. Hope I helped.

Looking for something else?

Not the answer you are looking for? Search for more explanations.