## ksaimouli 2 years ago (a)increasing (b) decreasing (c)local extreme values

1. ksaimouli

|dw:1353980630180:dw|

2. ksaimouli

i took derivative =0 i got $+-\sqrt{2}$

3. Brittni0605

Take the derivative, find the critical points, draw a number line, find y values of your critical points, determine local extrema and increasing/decreasing intervals.

4. ksaimouli

should i need to include the domain restriciton in numberline @Brittni0605

5. Brittni0605

If a restriction was given than yes.

6. ksaimouli

+-2

7. ksaimouli

no restriction is given

8. ksaimouli

when i take derivative i set denominator=0 i got +-2

9. Brittni0605

Ok, so your domain is negative infinity to infinity

10. ksaimouli

yup

11. ksaimouli

|dw:1353980936825:dw|

12. ksaimouli

this is the derivative of teh funciton

13. Brittni0605

Ok.

14. ksaimouli

so the critical points are|dw:1353981108528:dw|

15. Brittni0605

Yes.

16. ksaimouli

should need to set the denominator to find domain of the function |dw:1353981161255:dw|

17. ksaimouli

|dw:1353981180565:dw|

18. Brittni0605

Yes, good number line

19. ksaimouli

or|dw:1353981212350:dw|

20. ksaimouli

that one or this one so confused

21. Brittni0605

The first pic.

22. Brittni0605

You're critical values are the x values where the derivative =0 or where the derivative doesnt exist.

23. ksaimouli

then if i choose -3 to check whether it is + or - their is domain error

24. Brittni0605

By setting the numerator equal to 0, you found where the derivative equals . By setting the denominator equal to 0, you found where the derivative doesnt exist

25. ksaimouli

yup i know that one i set the number line can u plz figure out the +and- values

26. ksaimouli

|dw:1353981465522:dw|

27. Brittni0605

|dw:1353981469116:dw|

28. ksaimouli

so increasing=|dw:1353981723064:dw|

29. ksaimouli

dec|dw:1353981745781:dw|

30. Brittni0605

Yes.

31. Brittni0605

They didnt give you a domain, but bc of the type of prob, a domain was determined. You found out the function only exists between (-2,2)

32. ksaimouli

max root2 and min -root2

33. ksaimouli

so function exists (-2,2) but min and max at end enpoints undefinied am i right but it is good to check the domain

34. Brittni0605

Um, you have to find the y values of your critical points

35. ksaimouli

i know that i simple

36. ksaimouli

esay

37. Brittni0605

Lol, ok.

38. ksaimouli

i hate typo

39. ksaimouli

thx

40. Brittni0605

Np. Hope I helped.