• anonymous
How many permutations of the letters ABCDEFG contain: a.) the string BCD? b.) the string CFGA? c.) the strings BA and GF? if you can explain, that would be awesome! Thank you kindly.
Discrete Math
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • katieb
I got my questions answered at in under 10 minutes. Go to now for free help!
  • anonymous
Did u mean BCD togther?
  • kropot72
a.) Assuming "the string BCD" means the three letters are grouped together, the number of permutations of the 7 letters containing the string BCD will equal the possible number of permutations of the remaining 4 letters. Each permutation of AEFG can be placed in 5 possible ways relative to the string as follows: 1. 0 letters before the string 2. 1 letter before the string 3. 2 letters before the string 4. 3 letters before the string 5. 4 letters before the string Therefore the required number of permutations is: \[4!\times 5\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.