Is the difference of two polynomials always a polynomial? Explain.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Is the difference of two polynomials always a polynomial? Explain.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

take this \(x^2 +x+2\) and \(x^2 +x+4\) are their difference a polynomial?
?

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

the two expressions are polynomials rite?
yes
but subtracting the second from the first, gives us an integer, which is not a polynomial. This is a counter example
so the answer is
It is shown that it's no.
actually it is yes
Hmm ... I believe that integers are polynomials. An integer is simply a polynomial of degree zero.
well, it seems so...though that would means any expression is a polynomial as long as the degree is a positive integer
f(x)=0 f(x)=-3 are both polynomials to get the definition of polynomial: http://en.wikipedia.org/wiki/Polynomial
degree is non-negative, so it can be 0 degree

Not the answer you are looking for?

Search for more explanations.

Ask your own question