anonymous
  • anonymous
Use L'Hostpial rule to find the following limit: Lim x--> 0 of 6x/7arctan(4x) I did the work And i get the following 6(1+96x^2) / 7 and i end up with 6/7 however that's not the right answer, any insight on where I went wrong?
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Differentiate Numerator and Denominator Seperately...)
anonymous
  • anonymous
This is what I did..... top gives 6 and denominator gives 7 1/1-(4x)^2... therefore you get 6 ( 1-(4x)^2)/7 no?
ZeHanz
  • ZeHanz
l'Hopital's rule:\[\lim_{x \rightarrow0}\frac{ 6x }{ 7\arctan4x }=\]\[\lim_{x \rightarrow 0}\frac{ (6x)' }{ (7arctan4x)' }= \]\[\lim_{x \rightarrow 0}\frac{ 6 }{ 7* \frac{ 1 }{ 1+(4x)^2}*4 }=\]\[\frac{ 6 }{ 7*1*4 }=\frac{ 6 }{ 28 }=\frac{ 3 }{ 14 }\] You have to multiply with 4 in the denominator, because of the Chain Rule... Hope this helps! ZeHanz

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
I forgot the chain rule... god thank you so much! that was really helpful, remembering that trig function are included in the chain rule just made me solve half my problems again! have a good day
ZeHanz
  • ZeHanz
You are welcome!

Looking for something else?

Not the answer you are looking for? Search for more explanations.