anonymous
  • anonymous
Find cot θ if csc θ = -sqrt37/6 and tan θ > 0.
Precalculus
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
options are 1/6 sqrt37/37 sqrt37 6
anonymous
  • anonymous
@crater9909 any ideas?
anonymous
  • anonymous
1/6 I'm not sure

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Think about the triangle required to get the numbers given. If the csc theta is -sqrt(37)/6, the unscaled triangle is a 1/6/sqrt(37) triangle. Then cot theta will be 1/6 (same sign as tan).
anonymous
  • anonymous
Another way to think about it.\[\csc \theta = -\frac{\sqrt{37}}{6} \implies \sin \theta =-\frac{6}{\sqrt{37}} \implies \cos \theta= \pm \frac{1}{\sqrt{37}}\]Since tan theta and cot theta are reciprocals, they have to have the same sign. That means\[\cot \theta = \frac{1}{6}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.