anonymous
  • anonymous
Find the derivative: d/dt (0to Sin t)∫[(1/(4-u^2)][du] NOTE: What I mean with o to Sin t is that the 0 is below the integral and sin t is up or above the integral.
Calculus1
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
\[\frac{ d }{dt }\int\limits_{0}^{\sin t } \frac{ 1 }{ 4-u^2} du\]
ZeHanz
  • ZeHanz
First, try the integral:\[\int\limits_{}^{}\frac{ 1 }{ 4-u^2 }du = \int\limits_{}^{}\frac{ 1 }{ 4 }\frac{ 1 }{ 1-\frac{ u^2 }{ 4 } }du=\frac{ 1 }{ 4 }\int\limits_{}^{}\frac{ 1 }{ 1-\left( \frac{ u }{ 2 } \right)^2 }du\]Substitute v = u/2 and du = 2dv:\[\frac{ 1 }{ 4 }\int\limits_{}^{}\frac{ 2 }{ 1-v^2 }dv=\frac{ 1 }{ 2 }\int\limits_{}^{}\frac{ 1 }{ 1-v^2 }dv\]In trying to keep it clear, I have used an indefinite integral, but actually, the range has changed, due to the v = u/2 substitution. This gives the following integral:\[\frac{ 1 }{ 2 }\int\limits_{0}^{\frac{ 1 }{ 2 }\sin t}\frac{ 1 }{ 1-v^2 }dv\]The integrand is the derivative of arctanh(v). This can also be written as \[arctanh(v) =\frac{ 1 }{ 2 }\ln \frac{ 1+v }{ 1-v }\]So now we have\[\frac{ 1 }{ 2 }\int\limits\limits_{0}^{\frac{ 1 }{ 2 }\sin t}\frac{ 1 }{ 1-v^2 }dv =\frac{ 1 }{ 2 }\frac{ 1 }{ 2 }\left[ \ln \frac{ 1+v }{ 1-v } \right]_{0}^{\frac{ 1 }{ 2 }\sin t}\]For v = 0 this give 0, so the result is\[\frac{ 1 }{ 4 }\ln \frac{ 1+\frac{ 1 }{ 2 } \sin t}{ 1-\frac{ 1 }{ 2 }\sin t }=\frac{ 1 }{ 4 }\ln \frac{ 2+\sin t }{ 2-\sin t }\]Finally, differentiate this function:\[\frac{ d }{ dt }\left( \frac{ 1 }{ 4 }\ln \frac{ 2+\sin t }{ 2-\sin t } \right)=\frac{ 1 }{ 4 }\frac{ 1 }{ \frac{ 2+\sin t }{ 2-\sin t } }*\frac{ \cos t(2-\sin t)+(2+\sin t)\cos t }{ (2-\sin t)^2 }=\]\[\frac{ 1 }{ 4 }\frac{ 1 }{ 2+\sin t }\frac{ 4\cos t }{ 2-\sin t }=\frac{ \cos t }{ (2+\sin t)(2-\sin t) }\]This looks so nice, it must be the right answer! ;) ZeHanz
anonymous
  • anonymous
LOLOL thank you!! Looks good =) much appreciated!

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ZeHanz
  • ZeHanz
Thanks also! I'm learning myself from solving these crazy problems!
anonymous
  • anonymous
So its a win-win situation...AWESOME!

Looking for something else?

Not the answer you are looking for? Search for more explanations.