anonymous
  • anonymous
solve y dx + (3xy - 1) dy = 0
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
solve for y or dy/dx?
anonymous
  • anonymous
solve for y :)
anonymous
  • anonymous
\[y dx + (3xy - 1 ) dy = 0\] \[y dx + 3xy dy - dy = 0\]\[y \frac{ dx }{ dy }+3xy - 1 = 0\] \[\frac{ dx }{ dy }+ 3x = \frac{ 1 }{ y }\] I think, in order to satisfy the equation \(\frac{ dx }{ dy } + p(y)x = g(y) x\) \(p(y) = 3\) and \(g(y) = \frac{ 1 }{ y }\) \[\mu(y) = \exp(\int\limits\limits_{0}^{y} p(y) dy) = \exp (\int\limits\limits_{0}^{y} 3 dy) = e^{3y}\] \[x = \frac{ 1 }{ \mu(y) }\int\limits_{0}^{y} \mu(y) g(y) dy\] \[x = \frac{ 1 }{ e^{3y} } \int\limits_{0}^{y} e^{3y} \frac{ 1 }{ y } dy\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
is it correct??
anonymous
  • anonymous
I got \[xe^{3y} - \int\limits \frac{ e^{3y} }{ y } = C\] for the solution.
Kira_Yamato
  • Kira_Yamato
I'm not too sure, sorry.... But I think it should be ok...
anonymous
  • anonymous
Ok, np @Kira_Yamato i'm not sure for: \[\int\limits \frac{ e^{3y} }{ y } dy\] what results did you get?
Kira_Yamato
  • Kira_Yamato
This is what MatLab gave me
anonymous
  • anonymous
can i see ur script on matlab??
anonymous
  • anonymous
1 Attachment
Kira_Yamato
  • Kira_Yamato
Sorry I mean Wolfram Alpha
1 Attachment
anonymous
  • anonymous
ok.., thank u Kira :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.