anonymous
  • anonymous
Find minimum of : \sum_{k=1}^{n}a_{k}^{2}+\left(\sum_{k=1}^n a_k\right)^2. My teacher told me that I shoul use Cauchy-Schwarz inequality. Any tips?
Mathematics
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
\[ \sum_{k=1}^{n}a_{k}^{2}+\left(\sum_{k=1}^n a_k\right)^2\] \[\left(\sum_{k=1}^n a\right)^2=\sum_{k=1}^n a^3\] So your question boils down to \[\sum_{k=1}^n a^2+ a^3=\sum_{k=1}^n a^2(a+1)\]
anonymous
  • anonymous
http://users.tru.eastlink.ca/~brsears/math/oldprob.htm#s32
anonymous
  • anonymous
The link is the ()^2=(^3) proof

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
Although that's not Cauchy Schwartz.
anonymous
  • anonymous
I didn't realise that task has another assumption :\[\sum_{k=1}^{n}p_ka_k=1\]
anonymous
  • anonymous
Sorry, I forgot that a1 does not necessarily equal 1, a2=2 etc. forget what I've told you so far.
anonymous
  • anonymous
http://en.wikipedia.org/wiki/Cauchy%E2%80%93Schwarz_inequality#Statement_of_the_inequality you want the final formula of this section
anonymous
  • anonymous
Or do you think a1=1, a2=2 etc in this problem?

Looking for something else?

Not the answer you are looking for? Search for more explanations.