Quantcast

A community for students. Sign up today!

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

MarcLeclair

  • 2 years ago

Use l'hopsital RUle to solve for lim x-->Pi / 4 5(1-tanx)secx. I solve for the equation (by plugging in pi/4) and I don't get zero, however, my answer is still wrong, should I still use the hospital rule?

  • This Question is Closed
  1. tkhunny
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    \(\tan\left(\dfrac{\pi}{4}\right) = 1\) \(\sec\left(\dfrac{\pi}{4}\right) = \sqrt{2}\) 1) Never "plug in". Sometimes substitution is approprate. 2) This is not an indeterminate form. Please don't use l'Hopital's Rule. 3) Please supply the ENTIRE problem statement.

  2. MarcLeclair
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    That is the entire problem. and I should've calculated in radian... right?

  3. tkhunny
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    You can calculate in Light Years if you like. It's NOT an indeterminate form.

  4. tkhunny
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 1

    That doesn't mean we can't find the limit. We just can't use (or don't need) l'Hopital's Rule.

  5. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Ask a Question
Find more explanations on OpenStudy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.