anonymous
  • anonymous
Use Cramer's rule to solve the system. 2x + 4y - z = 32 x - 2y + 2z = -5 5x + y + z = 20 A. {( 1, -9, -6)} B. {( 2, 7, 6)} C. {( 9, 6, 9)} D. {( 1, 9, 6)}
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
we can start by clearing the z on the first two for starters. we do that by multiplying 2 to the first problem which makes it 4x+8y-2z=44 and then add it to the second
anonymous
  • anonymous
I got 5x+6y=39
anonymous
  • anonymous
then multiply the last one times -2 so the z's will cancel

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

tkhunny
  • tkhunny
Cramer's Rule? Well, I suppose we could simplify it a little, first, but that is a little unusual. You have four 3x3 determinates in your future.
anonymous
  • anonymous
or you could do it that way. both take about as long to me...
tkhunny
  • tkhunny
I see, so we're just ignoring problem statements. :-(
Callisto
  • Callisto
2x + 4y - z = 32 x - 2y + 2z = -5 5x + y + z = 20 \[\Delta = \left| \begin{matrix}2 & 4 &-1\\ 1 & -2 & 2 \\ 5 &1 & 1\end{matrix}\right|=...\] \[\Delta _{x} = \left| \begin{matrix}32 & 4 &-1\\ -5 & -2 & 2 \\ 20 &1 & 1\end{matrix}\right|=...\] \[\Delta _{y} = \left| \begin{matrix}2 & 32 &-1\\ 1 & -5 & 2 \\ 5 & 20 & 1\end{matrix}\right|=...\] \[\Delta _{z}= \left| \begin{matrix}2 & 4 & 32\\ 1 & -2 & -5 \\ 5 &1 & 20\end{matrix}\right|=...\] \[x =\frac{\Delta _{x}}{\Delta}\]\[y =\frac{\Delta _{y}}{\Delta}\]\[z =\frac{\Delta _{z}}{\Delta}\] Haven't used Cramer's Rule for long :(

Looking for something else?

Not the answer you are looking for? Search for more explanations.