thomas5267
  • thomas5267
Rewrite \(\int^3_2\frac{3x}{x^2+4x+5}\,dx\) into the form of \(\int^b_a\frac{mt+c}{t^2+k^2}\) or \(\int^b_a\frac{mt+c}{t^2-k^2}\). Not even a clue how to do it. Please help.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
Callisto
  • Callisto
Completing square!?
Callisto
  • Callisto
Consider the denominator: \[x^2+4x+5=(x^2 +4x+4-4)+5 = (x+2)^2 -4+5 =...\]
thomas5267
  • thomas5267
I don't think so. Completing the square will yield \((x+a)^2+b\), which is not what we want...

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

Callisto
  • Callisto
Hmm... \[\int^3_2\frac{3x}{x^2+4x+5} dx \]\[= \int^3_2\frac{3x}{x^2+4x+4-4+5} dx\]\[=\int^3_2\frac{3x}{(x+2)^2-4+5} dx\]\[=\int^3_2\frac{3x}{(x+2)^2+1} dx\]So, in this case, t= x+2, k=1 For the numerator, we want mt+c, and we have 3x. m must be 3. 3(x+2) +c = 3x c = -6
Callisto
  • Callisto
Ha! Maybe I'm not even going in the right direction!
thomas5267
  • thomas5267
OK, but then the problem tells us to integrate it. \[ \begin{align*} &\int^3_2\frac{3x}{(x+2)^2+1}\,dx\\ =&\int^5_3\frac{3t-6}{t^2+1}\,dt \end{align*} \] As far as I can see, this cannot be integrated, or is my brain not functioning properly now.
Callisto
  • Callisto
When x=2, t= 2+2 = 4... \[\int_4^5\frac{3t-6}{t^2+1}dt\]\[=\int_4^5\frac{3t}{t^2+1}-\frac{6}{t^2+1}dt\] For \(\int\frac{3t}{t^2+1}dt\) \[\int\frac{3t}{t^2+1}dt = \frac{3}{2}\int\frac{1}{t^2+1}d(t^2) \]Shouldn't be difficult For\(\int\frac{6}{t^2+1}dt\), use trigo sub.
thomas5267
  • thomas5267
OK, my brain is certainly not working properly. What is happening in here? I have never see something like this. \[ \int\frac{3t}{t^2+1}\,dt=\frac{3}{2}\int\frac{1}{t^2+1}\,d(t^2) \]
Callisto
  • Callisto
d/dt (t^2) = 2t, agree?
thomas5267
  • thomas5267
I still don't understand \(d(t^2)\) and what should I do with it. I would do this in the following way. \[ \begin{align*} &\int\frac{3t}{t^2+1}\,dt\\ =&3\int\frac{t}{t^2+1}\,dt\\ =&\frac{3}{2}\int\frac{1}{u}\,du\\ =&\frac{3}{2}\ln(|t^2+1|)+C \end{align*} \]
Callisto
  • Callisto
Basically, it's just substitution.. u = t^2 +1 du = 2t dt t dt = du/2 But you keep it as t, anyway, forget it! And you get it right.
Callisto
  • Callisto
But remember it's definite integral.. not indefinite..
thomas5267
  • thomas5267
Can you teach me how to do this in your way? It seems way faster then mine.
Callisto
  • Callisto
Hmm... I just did integration for the numerator and put it after ''d'' \[\int\frac{3t}{t^2+1}dt\]If you integrate the numerator, you'll get \(\frac{t^2}{2}\)So, \[\int\frac{3t}{t^2+1}dt = 3\int\frac{t}{t^2+1}dt =3 \int\frac{1}{t^2+1}d(\frac{t^2}{2})=\frac{3}{2} \int\frac{1}{t^2+1}d(t^2) \] Another way to think about it is that, d/dt (t^2 /2) gives you t, the numerator
Callisto
  • Callisto
Did... I make it worse??
thomas5267
  • thomas5267
So I can just integrate the numerator? What should I do with \(\int\frac{1}{t^2+1}d(t^2)\) then?
Callisto
  • Callisto
Get the answer! ln|t^2 +1| +C! Just consider t^2 = u, it's simply \(\int \frac{1}{u+1}du\) , that is ln |u+1|+C = ln|t^2+1|+C
thomas5267
  • thomas5267
Is the following true? \[ \int^5_4\frac{3t}{t^2+1}dt = \frac{3}{2}\int^{25}_{16}\frac{1}{t^2+1}d(t^2) \]
Callisto
  • Callisto
No, you didn't change the variable, so you don't have to change the bound value.
thomas5267
  • thomas5267
What is the name of the procedure? I would like to find more information on the internet.
Callisto
  • Callisto
I'm sorry.. I don't know the name of it :(
thomas5267
  • thomas5267
Anyways, thank you! I have learnt a lot in here.
Callisto
  • Callisto
Welcome :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.