anonymous
  • anonymous
The equation for an ellipse is \[\frac{ x ^{2} }{ a ^{2} }+\frac{ y ^{2} }{ b ^{2}}=1\] and the foci is given by (c,0) where \[c ^{2}=a ^{2}-b ^{2}\] and my question is if b>a is the foci given by (0,c) where \[c ^{2}=a ^{2}-b ^{2}\]
Mathematics
jamiebookeater
  • jamiebookeater
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

asnaseer
  • asnaseer
yes, if a>b then foci are at \((\pm c, 0)\) otherwise they are at \((0, \pm c)\). see here for more details: http://hotmath.com/hotmath_help/topics/ellipse.html
anonymous
  • anonymous
I suppose you could try to derive the equation as a locus from the two foci (c,0) and (-c,0).|dw:1354462354704:dw| \[\sqrt{y^2+(x-c)^2}+\sqrt{y^2+(x+c)^2}=k\]
anonymous
  • anonymous
It seems you're confused with the notation: Foci always belong to major axis, and major axis always named a!

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
\[y^2+(x-c)^2+y^2+(x+c)^2+\sqrt{y^2+(x-c)^2}\sqrt{y^2+(x+c)^2}=k^2\] \[y^2+(x-c)^2+y^2+(x+c)^2-k^2=-\sqrt{y^2+(x-c)^2}\sqrt{y^2+(x+c)^2}\] \[(y^2+(x-c)^2+y^2+(x+c)^2-k^2)^2=(y^2+(x-c)^2)(y^2+(x+c)^2)\]ans so on
anonymous
  • anonymous
*and
anonymous
  • anonymous
|dw:1354462531860:dw|
anonymous
  • anonymous
So thats the deal when a>b, right?
anonymous
  • anonymous
|dw:1354462661891:dw| And that b>a
anonymous
  • anonymous
oh wrong it should be rotated 90 degrees
anonymous
  • anonymous
|dw:1354462770084:dw|
asnaseer
  • asnaseer
yes, 'a' always represents the "major axis"
anonymous
  • anonymous
Ok great thank you guys!
asnaseer
  • asnaseer
yw :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.