anonymous
  • anonymous
Compute ∫ x cos(x)dx. Would we use Integration by Parts and compute this as - -sin(x) = Cos(x) + C ????
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
I wrote that incorrectly. -sin(x)+ cos(x) + C
TuringTest
  • TuringTest
close, but not quite
TuringTest
  • TuringTest
\[u=x\]\[dv=\cos xdx\]\[\int udv=uv-\int vdu\]look carefully and you should be able to see you dropped an x in there

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
@TuringTest , I'm a little confused on your explanation, where have I dropped an x?
TuringTest
  • TuringTest
u=x, and there is a u on the right of the formula. There should be an x where the u is...
anonymous
  • anonymous
@TuringTest I think I see. So, it would be -sin(x) + x cos(x) + C
TuringTest
  • TuringTest
what you have above is\[vdu-\int uv\]careful, identify your v and u, dv and du!
TuringTest
  • TuringTest
\[u=x\implies du=dx\]\[dv=\cos xdx\implies v=-\sin x\]\[\int udv=uv-\int vdu\]slowly and carefully plug in each for u, v, and du
anonymous
  • anonymous
@TuringTest Thank you for your patience with me. Would it be x sin x + cos x + C?
RadEn
  • RadEn
true
TuringTest
  • TuringTest
\[u=x\implies du=dx\]\[dv=\cos xdx\implies v=-\sin x\]\[\int udv=uv-\int vdu\]\[\int x\cos xdx=x(-\sin x)-\int(-\sin x)dx=-x\sin x+\int\sin xdx\]
TuringTest
  • TuringTest
crap I made up a negative sign
RadEn
  • RadEn
int cosx = sinx not -sinx
TuringTest
  • TuringTest
\[u=x\implies du=dx\]\[dv=\cos xdx\implies v=\sin x\]\[\int udv=uv-\int vdu\]\[\int x\cos xdx=x(\sin x)-\int(\sin x)dx=x\sin x+\int\sin xdx\]yeah you were right, my bad :P
anonymous
  • anonymous
If only one day I could understand math that way both of you do... thanks for your help!
TuringTest
  • TuringTest
welcome!

Looking for something else?

Not the answer you are looking for? Search for more explanations.