anonymous
  • anonymous
The radioactive substance strontium-90 has a half-life of 28 years. In other words, it takes 28 years for half of a given quantity of strontium-90 to decay to a non-radioactive substance. The amount of radioactive strontium-90 still present after t years is modeled by the expression 80 *2^t/28 grams. Evaluate the expression for t = 0, t = 28 and t = 56. What does each value of the expression represent?
Mathematics
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
\[80\times 2^{\frac{0}{28}}=80\times 2^0=80\times 1=80\] for the first one others are similar
anonymous
  • anonymous
Thank you (:

Looking for something else?

Not the answer you are looking for? Search for more explanations.