anonymous
  • anonymous
Find the point on the graph of √(x+1) that lies closest to point ( 4,0).
OCW Scholar - Single Variable Calculus
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
What problem are you having with that?
anonymous
  • anonymous
Overall concept: Substitute points into the distance formula find a minimum using derivatives. \[d=\sqrt{(x _{2}-x _{1})^{2}+(y _{2}-y _{1})^{2}}\]where\[(x _{1}, y _{1})=(4,0)\]\[(x _{2},y _{2})=(x, \sqrt{x+1})\]Simplify. Take the derivative. Find critical points by setting the derivative to zero. Determine if there is a relative minimum and what it is. Plug that back into the original function to find the y value of the point.

Looking for something else?

Not the answer you are looking for? Search for more explanations.