anonymous
  • anonymous
prove by mathematical induction 1^2+2^2+3^2.........+n^2= ?[n(n+1)(2n+1)/6]
Precalculus
schrodinger
  • schrodinger
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
for n=1, L.H.S = 1^2 = 1, R.H.S= [1*(1+1)(2*1+1)/6]=1 Hence, L.H.S= R.H.S for n=1 Now assume the result is true for some integer p which implies \[1^{2}+ 2^{2}+...+p ^{2} = p(p+1)(2p+1)/6 + \] Now add \[(p+1)^{2}\] for both sides. \[[1^{2}+ 2^{2}+...+p ^{2} + (p+1)^{2} = p(p+1)(2p+1)/6 + (p+1)^{2}\] Now you can simplify the R.H.S of the hypothesis to obtain \[(p+1)(p+2)(2(p+1)+1)/6\] which implies that the given expression is valid for \[(p+1)^{th}\] integer given that the result is true for the \[p ^{th}\] integer. Hence the result stands for every positive integer according to mathematical induction
anonymous
  • anonymous
|dw:1354544448784:dw|
anonymous
  • anonymous
|dw:1354544613390:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
|dw:1354544728681:dw|
anonymous
  • anonymous
|dw:1354544851856:dw|
anonymous
  • anonymous
|dw:1354545080521:dw|
anonymous
  • anonymous
|dw:1354545310762:dw|
anonymous
  • anonymous
|dw:1354545420343:dw|
anonymous
  • anonymous
thanksssssssssss

Looking for something else?

Not the answer you are looking for? Search for more explanations.