Got Homework?
Connect with other students for help. It's a free community.
Here's the question you clicked on:
 0 viewing
prove by mathematical induction 1^2+2^2+3^2.........+n^2= ?[n(n+1)(2n+1)/6]
 one year ago
 one year ago
prove by mathematical induction 1^2+2^2+3^2.........+n^2= ?[n(n+1)(2n+1)/6]
 one year ago
 one year ago

This Question is Closed

Tharindu_RusiraBest ResponseYou've already chosen the best response.0
for n=1, L.H.S = 1^2 = 1, R.H.S= [1*(1+1)(2*1+1)/6]=1 Hence, L.H.S= R.H.S for n=1 Now assume the result is true for some integer p which implies \[1^{2}+ 2^{2}+...+p ^{2} = p(p+1)(2p+1)/6 + \] Now add \[(p+1)^{2}\] for both sides. \[[1^{2}+ 2^{2}+...+p ^{2} + (p+1)^{2} = p(p+1)(2p+1)/6 + (p+1)^{2}\] Now you can simplify the R.H.S of the hypothesis to obtain \[(p+1)(p+2)(2(p+1)+1)/6\] which implies that the given expression is valid for \[(p+1)^{th}\] integer given that the result is true for the \[p ^{th}\] integer. Hence the result stands for every positive integer according to mathematical induction
 one year ago
See more questions >>>
Your question is ready. Sign up for free to start getting answers.
spraguer
(Moderator)
5
→ View Detailed Profile
is replying to Can someone tell me what button the professor is hitting...
23
 Teamwork 19 Teammate
 Problem Solving 19 Hero
 Engagement 19 Mad Hatter
 You have blocked this person.
 ✔ You're a fan Checking fan status...
Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.