anonymous
  • anonymous
Integration: (-pi/4) to (pi/4) cos x dx
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
ZeHanz
  • ZeHanz
Do you know the Fundamental Theorem of Calculus?
anonymous
  • anonymous
note that \(\int cos x dx= -sin x +C\)
ZeHanz
  • ZeHanz
It says\[\int\limits_{a}^{b}f(x)dx=F(a)-F(b)\]In this case this means: (see also the answer of Shadowys)\[\int\limits_{-\frac{ \pi }{ 4 }}^{\frac{ \pi }{ 4 }}cosxdx=\sin(\frac{ \pi }{ 4 })-\sin( -\frac{ \pi }{ 4 })=\frac{ 1 }{ 2 }\sqrt{2}--\frac{ 1 }{ 2 }\sqrt{2}=\sqrt{2}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

ZeHanz
  • ZeHanz
F is called a primitive function of f. It means: F'(x) = f(x). So the Fundamental Theorem makes integrating (= calculating an infinite sum of infinite small numbers - very hard!) much easier: if you can find a primitive F of f, you're done. In the case of cos(x) this is simple: (sinx)' = cos x, so F(x) = sinx.

Looking for something else?

Not the answer you are looking for? Search for more explanations.