anonymous
  • anonymous
Differential equations
Mathematics
katieb
  • katieb
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
I have: \[(2x^{2} + y) dx + (x^{2} y - x) dy = 0 \]
anonymous
  • anonymous
did you get it @sirm3d ??
sirm3d
  • sirm3d
\[\large 2x^2dx+ydx+x^2ydy-xdy=0\]\[\large 2x^2dx-(xdy-ydx)+x^2ydy=0\]divide everything by x^2 \[\large2dx-\frac{ xdy-ydx }{ x^2 }+ydy=0\]thesecond term is the differential d(y/x)\[\large2dx-d\left(\frac{y}{x}\right)+ydy=0\]integrate\[\large 2x-\frac{ y }{ x }+\frac{ y^2 }{ 2 }=\frac{ C }{ 2 }\]\[\large 4x^2-2y+2xy^2=Cx\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
I got \[2x + \frac{ 1 }{ 2 } y^{2} -\frac{ y }{ x } = C\]
sirm3d
  • sirm3d
that is also correct. the difference in our answer is the choice of the constant.
anonymous
  • anonymous
very nice..., Thank You for Checking :)
anonymous
  • anonymous
|dw:1354568766432:dw|
anonymous
  • anonymous
thank u @mahmit2012 i'll post my answer \[(2x^{2} + y) dx + (x^{2} y -x) dy = 0\] where \((2x^{2} + y) = M\) and \(x^{2}y - x = N\) \[\frac{ dM }{ dy } = 1\] \[\frac{ dN }{ dy } = 2xy - 1\] So this isn't exact differential equations for integration factor: \(P (x) = \frac{ 1 }{ N } \left( \frac{ dM }{ dy } - \frac{ dN }{ dx } \right)\) because it's only f(x) \[P (x) = \frac{ 1 }{ x^{2}y - x } \left[ 1- (2xy -1) \right] = \frac{ 2(1-xy) }{ x^{2}y-x}= -\frac{ 2 }{ x }\] \[\mu(x) = \exp (-2 \int\limits_{0}^{x} \frac{ dx }{ x }) = \exp(-2 \ln x) = e^{\ln x^{-2}} = x^{-2} = \frac{ 1 }{ x^{2}}\] \[\mu(x) = \exp(\int\limits_{0}^{x} P(x) dx)\] \[(2+ \frac{ y }{ x^{2} } ) dx + (y - \frac{ 1 }{ x }) dy = 0\] Look! its exact differential equations..., multiply all (1) terms by integration factor, becomes: \[x^{-2} (2x^{2} + y) dx + x^{-2} (x^{2}y - x) dy = 0\] Then, using grouping method: \[2 dx + \frac{ y }{ x^{2} } dx + y dy - \frac{ dy }{ x } = 0\] \[2dx + y dy +\frac{ y }{ x^{2} } dx - \frac{ dy }{ x } = 0\] \[d(2x) + d(\frac{ 1 }{ 2 }y^{2}) + d(-\frac{ y }{ x }) = dC\] \[\int\limits d(2x) + \int\limits d(\frac{ 1 }{ 2 }y^{2}) + \int\limits d(-\frac{ y }{ x }) = \int\limits dC\] becomes \[2x + \frac{ 1 }{ 2 } y^{2} - \frac{ y }{ x } =C\]
anonymous
  • anonymous
I thank all of you guys.., , @sirm3d and @mahmit2012 thank u so much :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.