anonymous
  • anonymous
Green's theorem circulation form. F=<0,x^2+y^2> on bounded circle x^2+y^2<1
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
do it in both integrals
anonymous
  • anonymous
I typed that wrong: \[L=0,M=x^2+y^2 \implies \frac{\partial M}{\partial x}=2x; \frac{\partial L}{\partial y}=0; \implies 2 \int\limits_0^{2 \pi}\int\limits_0^1 r^2 \cos(\phi) dr d \phi\] Which either way still equals zero.
anonymous
  • anonymous
how did you oo so you used the cylindrical coordinates and made x=rcos(x)

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
but it says to use 2 different integrals in green's theorem, im confused which is the second one. Like you know the green's theorem one formula equals alternative formula

Looking for something else?

Not the answer you are looking for? Search for more explanations.