anonymous
  • anonymous
Find the vertices and locate the foci for the hyperbola whose equation is given. 49x^2 - 100y^2 = 4900
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
as this is a normal hyperbola, no translation, so to find the vertices, just find the x-intercept.
anonymous
  • anonymous
then change the hyperbola to standard form and use "a" and "b" to find e. the foci are \((\pm ae,0)\)
anonymous
  • anonymous
|dw:1354622303936:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
|dw:1354622474196:dw|
anonymous
  • anonymous
|dw:1354622597920:dw|
anonymous
  • anonymous
My options: A. vertices: ( -10, 0), ( 10, 0) ; foci: (-square root of 51, 0), (square root of 51, 0) B. vertices: ( -10, 0), ( 10, 0) ; foci: (-square root of 149, 0), (square root of 149, 0) C. vertices: ( -7, 0), ( 7, 0) ; foci: (-square root of 149, 0), (square root of 149, 0) D. vertices: (0, -10), (0, 10) ; foci: (0, -square root of 149), (0, square root of 149)
anonymous
  • anonymous
I believe you've solved the intercepts?
anonymous
  • anonymous
b
anonymous
  • anonymous
thank you very much
anonymous
  • anonymous
thanks sister
anonymous
  • anonymous
ok sister.

Looking for something else?

Not the answer you are looking for? Search for more explanations.