Find the vertices and locate the foci for the hyperbola whose equation is given. 49x^2 - 100y^2 = 4900

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the vertices and locate the foci for the hyperbola whose equation is given. 49x^2 - 100y^2 = 4900

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

as this is a normal hyperbola, no translation, so to find the vertices, just find the x-intercept.
then change the hyperbola to standard form and use "a" and "b" to find e. the foci are \((\pm ae,0)\)
|dw:1354622303936:dw|

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

|dw:1354622474196:dw|
|dw:1354622597920:dw|
My options: A. vertices: ( -10, 0), ( 10, 0) ; foci: (-square root of 51, 0), (square root of 51, 0) B. vertices: ( -10, 0), ( 10, 0) ; foci: (-square root of 149, 0), (square root of 149, 0) C. vertices: ( -7, 0), ( 7, 0) ; foci: (-square root of 149, 0), (square root of 149, 0) D. vertices: (0, -10), (0, 10) ; foci: (0, -square root of 149), (0, square root of 149)
I believe you've solved the intercepts?
b
thank you very much
thanks sister
ok sister.

Not the answer you are looking for?

Search for more explanations.

Ask your own question