anonymous
  • anonymous
3^2x derivative
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
2.3^(2x) ln3
anonymous
  • anonymous
is it 2.3 ?
anonymous
  • anonymous
\[2(3^{2x}) \ln 3\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
ok got it
anonymous
  • anonymous
need details?
anonymous
  • anonymous
actually yes
anonymous
  • anonymous
ok then, so that type of derivetive is a^(u(x)) where "a" is a constant and "u(x)" is the equation, derived i looks like" u(x)' a^(u(x)) ln a", it looks complicated i know :P
anonymous
  • anonymous
got it ` thank you
anonymous
  • anonymous
oh and you have to finish by multipling 2 by 3 so final answer is \[6^{2x}\ln 3\]
anonymous
  • anonymous
use the squeeze theorem to show that if 0le f(x) le 5 , for all x in [ 0 , 1], then lim_{x rightarrow 0^+} \ \left( e^{x} - 1\right) f(x) =0
anonymous
  • anonymous
0le f(x) le 5
anonymous
  • anonymous
\[use the squeeze theorem \to show that if 0\le f(x) \le 5 , for all x \in [ 0 , 1], then \lim_{x \rightarrow 0^+} \ \left( e^{x} - 1\right) f(x) =0\]
anonymous
  • anonymous
0le f(x) le 5 , for all x in [ 0 , 1],
anonymous
  • anonymous
sorry but i cant help you, i've never used the theorem before
anonymous
  • anonymous
does it say what f(x) is ?
anonymous
  • anonymous
no
anonymous
  • anonymous
lim_{x rightarrow 0^+} \ \left( e^{x} - 1\right) f(x) =0
anonymous
  • anonymous
\[\lim_{x \rightarrow 0^+} \ \left( e^{x} - 1\right) f(x) =0 \]

Looking for something else?

Not the answer you are looking for? Search for more explanations.