## yashar806 2 years ago 3^2x derivative

1. edpinho

2.3^(2x) ln3

2. yashar806

is it 2.3 ?

3. edpinho

$2(3^{2x}) \ln 3$

4. yashar806

ok got it

5. edpinho

need details?

6. yashar806

actually yes

7. edpinho

ok then, so that type of derivetive is a^(u(x)) where "a" is a constant and "u(x)" is the equation, derived i looks like" u(x)' a^(u(x)) ln a", it looks complicated i know :P

8. yashar806

got it ` thank you

9. edpinho

oh and you have to finish by multipling 2 by 3 so final answer is $6^{2x}\ln 3$

10. yashar806

use the squeeze theorem to show that if 0le f(x) le 5 , for all x in [ 0 , 1], then lim_{x rightarrow 0^+} \ \left( e^{x} - 1\right) f(x) =0

11. yashar806

0le f(x) le 5

12. yashar806

$use the squeeze theorem \to show that if 0\le f(x) \le 5 , for all x \in [ 0 , 1], then \lim_{x \rightarrow 0^+} \ \left( e^{x} - 1\right) f(x) =0$

13. yashar806

0le f(x) le 5 , for all x in [ 0 , 1],

14. edpinho

sorry but i cant help you, i've never used the theorem before

15. edpinho

does it say what f(x) is ?

16. yashar806

no

17. yashar806

lim_{x rightarrow 0^+} \ \left( e^{x} - 1\right) f(x) =0

18. yashar806

$\lim_{x \rightarrow 0^+} \ \left( e^{x} - 1\right) f(x) =0$