Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

The slope of a line through A(-1,1) is 3. Locate the point on this line that is 2sqrt3 from A.

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
where did you get that fromula?
u know Distance Formula

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

yup :)
Let that Point Be B (x , y ) d = 2sqrt3 A (-1,1) nw use that Formula
I got x^2 + 2x - 10 + y^2 - 2y = 0 @Yahoo!
@Yahoo! are you still there?
help please :)
I got \[(-1-\frac{ \sqrt{30} }{ 4 }, -1-12\frac{ \sqrt{30} }{ 4 })\] and \[(-1+\frac{ \sqrt{30} }{ 4 }, -1+12\frac{ \sqrt{30} }{ 4 })\]
@philo1234 how did you do it?
Those 12 should be 3
I made 2 equations: 1. Using the slope equation: \[\frac{ y-1 }{ x+1 } = 3\] 2. Then used the distance formula to make the second equation: \[2\sqrt{3} = \sqrt{(y-1)^2 + (x+1)^2}\] Do you follow so far?
3. The I solve for y in the first equation and substitute it in equation 2: \[y = 3x+4\] Substitute in equations 2: \[2\sqrt{3} = \sqrt{(3x+4-1)^2 +(x+1)^2}\] 4. Square both sides to get rid of the parentheses: \[(2\sqrt{3})^2 = (3x+3)^2 +(x+1)^2\] 5. Multiply out everything, put all the values on one side then solve for x using the quadratic formula: \[12 =10x^{2}+20x+10\]
Do you understand how I got this?
are u there @moongazer
I'm back sory for the late reply :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question