At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga.
Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus.
Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions.

See more answers at brainly.com

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your **free** account and access **expert** answers to this and **thousands** of other questions

yes but you can break up anyway you like

the top part gives what i wrote above, the bottom part is analogous, just make it negative

the bottom can be any number??

I know I'm suppose to use the second fundamental theorem

yes
\[\int_{\sqrt{x}}^{x^2}f(t)dt=\int_{\sqrt{x}}^af(t)dt+\int_a^{x^2}f(t)dt\]

My teacher chose 0 though. Is there a reason for that? should I just choose 0 everytime?

take the derivative of the second part, get \(f(x^2)\times 2x\)

the derivative of the first part is \(-f(\sqrt{x})\times \frac{1}{2\sqrt{x}}\)

if you like to pick zero, go ahead a pick zero
makes no difference

Ok I understand it now. Thanks!!!! :)