pleasssse helpp me ! find the value of K for which x + 4y + K = 0 is a tangent to x^2 + y^2 - 2x + 2y - 15 = 0

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

pleasssse helpp me ! find the value of K for which x + 4y + K = 0 is a tangent to x^2 + y^2 - 2x + 2y - 15 = 0

Mathematics
See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

diff the eqtn of the circle w.r.t. x to get dy/dx from circle = -(x-1)/(y+1) as gradient of line stated is -1/4 then put dy/dx = -1/4 and re-arrange to get y=4x-5. Where this line intersects circle the gradient=-1/4 . Then solve the eqtn of the circle and y=4x-5 as simultaneous etqns by substitution i.e replace all y values is eqtn of circle with 4x-5, giving x^2+(4x-5)^2-2x+2(4x-5)-15=0 expand and simplify to give x^2-2x=0 , factorise to get x(x-2)=0 , therefore x=0 or x=2, hence tangent with gradient of -1/4 happens at x=0 or x=2 and putting these values back into circle gives y values of -5 and 3 respectively. therefore only two possible coordinates are (0,-5) and (2,3) . Put these back into eqtn of line x+4y+k= 0 and you get k=20 or k=-14. These solutions can be verified with any graphing calculator or programme. Please note there are two solutions, not one, unless specified that k>0
we haven't done differentiation yet so i don't know how to do it ?
wow not sure how they expect you to do it then..... you have two simultaneous equations with 3 variables.....you can't solve that. .... you could draw it, but circle is (x-1)^2 + (y+1)^2 -17 =0 so its a circle centre (1,-1) radius square root of 17, so you can't draw that exactly....... the only other way is trial and error with two equations and adjust k until you find solution but that's a waste of your time with no mathematical insight gained....so no other information given at all??

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

no sorry it doesn't matter i'll get it eventually thanks for your help anyway tho :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question