anonymous
  • anonymous
Find the exact value of the area under one arch of the curve y(t) = V_0sin(wt). Assume V_0 and w are positive constants.
MIT 18.01 Single Variable Calculus (OCW)
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
What problem are you having with that?
anonymous
  • anonymous
how to find the area of one arch of the curve
anonymous
  • anonymous
Integrate from t=0 to t= pi/w the function y(t) = V_0sin(wt)....the period of the sine function is 2*pi normally but the period in the case is 2pi/w, and for one arch of the curve, that is one half period, so the half period = pi/w. So then you just need to do the integral and evaluate at those limits. (0 to pi/w)......good luck.

Looking for something else?

Not the answer you are looking for? Search for more explanations.