Find the second derivative of f(x)=sinxcosx.

At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get our expert's

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions.

A community for students.

Find the second derivative of f(x)=sinxcosx.

Mathematics
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this and thousands of other questions

Well, what's the first derivative?
use the product rule...
1 Attachment

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

The first derivative is (cosx)^2-(sinx)^2. But how do I take the derivative of that?
well, remember that cos(a+b)=cos a cos b-sin a sin b...
use the chain rule
in other words, use the double angle formula for to reduce the following expression you have obtained. And then use the chain rule.
\[f'(x)=cosx(\cos(x))+(-\sin(x)\sin(x))\] Product Rule and Derivatives of Trigs Simplify. \[f'(x)=\cos ^{2}x-\sin ^{2}x\] \[f''(x)=2\cos(x)(-\sin(x))-2\sin(x)(\cos(x))\] Derivative of Trig and Chain Rule
bring the power down, keep the inside, differentiate inside
Since no one seems to get it USE COS^2 X-SIN^2 X=COS(2x) TO SIMPLIFY EXPRESSION
simplified expression is dy/dx=cos(2x) then take the dervative of that
@Idealist are you followign?
Yes. I got it. Thanks for the help, guys.
I like medals. LOL but yeah, nice to see :) let me know your final answer so I can check it

Not the answer you are looking for?

Search for more explanations.

Ask your own question