anonymous
  • anonymous
.
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
hello ambassador
anonymous
  • anonymous
start with \[2x^2-8x+7=0\] then use \[x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\] with \(a=2,b=-8,c=7\)
saifoo.khan
  • saifoo.khan
@satellite73
1 Attachment

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
second step is \[x=\frac{8\pm\sqrt{8^2-4\times 2\times 7}}{2\times 2}\] then a bunch of arithmetic
anonymous
  • anonymous
oh ok we compute \[\frac{8\pm\sqrt{64-56}}{4}\] \[=\frac{8\pm\sqrt{8}}{4}\] \[=\frac{8\pm2\sqrt{2}}{4}\] \[=\frac{2(4+\sqrt{2})}{4}\] \[=\frac{4+\sqrt{2}}{2}\]
anonymous
  • anonymous
rewrite \(\sqrt{8}\) as \(2\sqrt{2}\) then factor and cancel details are above
anonymous
  • anonymous
it is because \(\sqrt{8}=\sqrt{4\times 2}=\sqrt{4}\sqrt{2}=2\sqrt{2}\) in simplest radical form
anonymous
  • anonymous
then be careful with factoring before you cancel the common factor of 2 top and bottom
candyme
  • candyme
Ok, you're going to multiply the terms in the radical\[x=\frac{8 \pm \sqrt{64-56}}{4}\]\[x= \frac{8 \pm \sqrt{8}}{4}\]\[x=\frac{8 \pm \sqrt{2*4}}{4}\]The 4 comes out as a 2 since the square root of 4 is 2\[x= \frac{8 \pm 2\sqrt{2}}{4}\]Divide by 2\[x=\frac{4 \pm \sqrt{2}}{2}\]
anonymous
  • anonymous
it could be written as \[2\pm\frac{\sqrt{2}}{2}\]
candyme
  • candyme
Satellite is right, I was about to say that :)

Looking for something else?

Not the answer you are looking for? Search for more explanations.