Open study

is now brainly

With Brainly you can:

  • Get homework help from millions of students and moderators
  • Learn how to solve problems with step-by-step explanations
  • Share your knowledge and earn points by helping other students
  • Learn anywhere, anytime with the Brainly app!

A community for students.

See more answers at brainly.com
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Join Brainly to access

this expert answer

SIGN UP FOR FREE
hello ambassador
start with \[2x^2-8x+7=0\] then use \[x=\frac{-b\pm\sqrt{b^2-4ac}}{2a}\] with \(a=2,b=-8,c=7\)

Not the answer you are looking for?

Search for more explanations.

Ask your own question

Other answers:

second step is \[x=\frac{8\pm\sqrt{8^2-4\times 2\times 7}}{2\times 2}\] then a bunch of arithmetic
oh ok we compute \[\frac{8\pm\sqrt{64-56}}{4}\] \[=\frac{8\pm\sqrt{8}}{4}\] \[=\frac{8\pm2\sqrt{2}}{4}\] \[=\frac{2(4+\sqrt{2})}{4}\] \[=\frac{4+\sqrt{2}}{2}\]
rewrite \(\sqrt{8}\) as \(2\sqrt{2}\) then factor and cancel details are above
it is because \(\sqrt{8}=\sqrt{4\times 2}=\sqrt{4}\sqrt{2}=2\sqrt{2}\) in simplest radical form
then be careful with factoring before you cancel the common factor of 2 top and bottom
Ok, you're going to multiply the terms in the radical\[x=\frac{8 \pm \sqrt{64-56}}{4}\]\[x= \frac{8 \pm \sqrt{8}}{4}\]\[x=\frac{8 \pm \sqrt{2*4}}{4}\]The 4 comes out as a 2 since the square root of 4 is 2\[x= \frac{8 \pm 2\sqrt{2}}{4}\]Divide by 2\[x=\frac{4 \pm \sqrt{2}}{2}\]
it could be written as \[2\pm\frac{\sqrt{2}}{2}\]
Satellite is right, I was about to say that :)

Not the answer you are looking for?

Search for more explanations.

Ask your own question