anonymous
  • anonymous
\[\int\limits_{}^{}\tan^3x secx dx \]
Calculus1
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
RadEn
  • RadEn
first, change tan^3 x = tan^2x tanx
anonymous
  • anonymous
I tried this \[\int\limits_{}^{}(\tan^2x. tanx. secx) dx \] \[\int\limits_{}^{}(\sec^2x-1) (tanx. secx) dx \]
slaaibak
  • slaaibak
Yeah, continue with that and set u = sec x du = sec x tan x

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

slaaibak
  • slaaibak
du = sec x tan x dx
RadEn
  • RadEn
ok, then multiply of them by use distributive property = int (sec^2x secxtanx - secxtanx) dx = int (sec^2x secxtanx) dx - int (secxtanx) dx
RadEn
  • RadEn
case I : int (sec^2x secxtanx) dx use int by subs, like slaaibak said : u=secx case II : int (secxtanx) = secx (i sure u have remembered) :p
anonymous
  • anonymous
I think I do :) thanks @RadEn and @slaaibak

Looking for something else?

Not the answer you are looking for? Search for more explanations.