pottersheep
  • pottersheep
Please help! Show that each statement is true (LOGS) [1/log base 5 of a] + [1/log base 3 of a] = [1/logbase 15a]
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
jamiebookeater
  • jamiebookeater
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
pottersheep
  • pottersheep
sorry last one is log base 15 of a
anonymous
  • anonymous
lets add on the left
anonymous
  • anonymous
\[\frac{\log_3(a)+\log_5(a)}{\log_3(a)\times \log_5(a)}\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

anonymous
  • anonymous
now lets flip it and see if we can show it is the same as \(\log_{15}(a)\)
anonymous
  • anonymous
that is, can we show \[\frac{\log_3(a)\times \log_5(a)}{\log_3(a)+\log_5(a)}=\log_15(a)\] and i think we can do it using the change of base formula and writing everything in terms of \(\log_{15}(x)\)
anonymous
  • anonymous
do you know the change of base formula?
anonymous
  • anonymous
you get a nasty compound fraction on the left, i will see if i can write it \[\frac{\frac{\log_{15}(a)}{\log_{15}(5)}\times \frac{\log_{15}(a)}{\log_{15}(5)}}{\frac{\log_{15}(a)}{\log_{15}(5)}+\frac{\log_{15}(a)}{\log_{15}(3)}}\]
anonymous
  • anonymous
to clear the compound fraction, multiply top and bottom by \(\log_{15}(3)\log_{15}(5)\)
anonymous
  • anonymous
the numerator will be \[\log_{15}(a)\times \log_{15}(a)\] and the denominator will be \[\log_{15}(a)\log_{15}(5)+\log_{15}(a)+\log_{15}(5)\] factor as \[\log_{15}(a)\left(\log_{15}(5)+\log_{15}(3)\right)\] which gives \[\log_{15}(a)\times \log_{15}(3\times 5)=\log_{15}(a)\times 1\]
anonymous
  • anonymous
typo above, second line should be \[\log_{15}(a)\log_{15}(5)+\log_{15}(a)\log_{15}(5)\]
anonymous
  • anonymous
cancel and you get what you want
pottersheep
  • pottersheep
oooooo Thanks!

Looking for something else?

Not the answer you are looking for? Search for more explanations.