anonymous
  • anonymous
I have question..
Mathematics
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
schrodinger
  • schrodinger
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Suppose that f:R to R is differentiable at c and that f(c)=0. Show that g(x):=|f(x)| is differentiable at c if and only if f'(c)=0.
TuringTest
  • TuringTest
\[g'(x)=\frac{f(x)}{|f(x)|}\cdot f'(x)\]so I guess I'm stuck on showing how to deal with the intederminacy of plugging in x=c=0
TuringTest
  • TuringTest
I guess we must show that\[\frac{f(0)}{|f(0)|}\neq0\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.

More answers

TuringTest
  • TuringTest
can't get l'Hospital to yield anything really...
anonymous
  • anonymous
\[\Large f'(x)=|\frac{f(x)-f(0)}{x-c}-f'(c)|<\epsilon\]
anonymous
  • anonymous
this is the epsilon-delta definition of diff. at c..
anonymous
  • anonymous
sorry should be this\[\Large f'(x)=|\frac{f(x)-f(c)}{x-c}-f'(c)|<\epsilon\]
TuringTest
  • TuringTest
yeah that looks a bit better...
TuringTest
  • TuringTest
oh, @mahmit2012 is here, he can likely help.
anonymous
  • anonymous
|dw:1354859726253:dw|

Looking for something else?

Not the answer you are looking for? Search for more explanations.