anonymous
  • anonymous
the elliptical orbit of Mars each unit of the coordinate plane represents 1 million kilometers. The planet's maximum distance from the sun is 249 million kilometers and its minimum distance from the Sun is 207 million kilometers. The Sun is at one focus of the ellipse and the center of the ellipse is at (0, 0). The coordinates of the Sun are (?, 0)
Mathematics
chestercat
  • chestercat
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.

Get this expert

answer on brainly

SEE EXPERT ANSWER

Get your free account and access expert answers to this
and thousands of other questions

anonymous
  • anonymous
The sun has the same y coordinates as the center so it implicates it is horizontal ellipse. so use the formula for horiz ellipse,\[\frac{x^{2}}{a^{2}}+\frac{y^{2}}{b^{2}}=1\] the max distance from the sun is 249,000,000Km so \[a+c=249*10^{6}km\] and the minimum is 207,000,000km so \[a-c=207*10^{6}km\] add the two equations to eliminate c terms. \[2a=249*10^{6}km+207*10^{6}km = 456*10^{6}km\]divide by 2. and you get \[\frac{456*10^{6}}{2}=228*10^{6}km=a\] substitute a in the first equation. \[(228*10^{6}km)+c=249*10^{6}km\] subtract \[c=249*10^{6}km-228*10^{6}km = 21*10^{6}km\] so the sun is at \[(21*10^{6},0)\] or (21,000,000,0)
anonymous
  • anonymous
forgot to mention the c,c is the Foci (+-c,0), where \[c^{2}=a^{2}+b^{2}\]
anonymous
  • anonymous
thanks!

Looking for something else?

Not the answer you are looking for? Search for more explanations.