Quantcast

A community for students. Sign up today!

Here's the question you clicked on:

55 members online
  • 0 replying
  • 0 viewing

exe

  • 2 years ago

In dimensional analysis, how do we go from [T]^1 = [L]^a [M]^b ([L]^c/[T]^2c), knowing that a = 1/2 b = 0 and c = -1/2, to t = (constant) sqrt(h/g)? How do we know there's a constant and where does it come from? Wasn't L supposed to cancel itself out?

  • This Question is Open
  1. Jeshaiah
    • 2 years ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Actually, the equation was [T]^1 is directly proportional to [L]^a [M]^b ([L]^c/[T]^2c), which means that dividing [T]^1 by [L]^a [M]^b ([L]^c/[T]^2c) would give you a non-zero constant. The constant has no dimensions, and does not affect the final dimension of the answer. Unfortunately, this also means that the constant cannot be identified by dimensional analysis. The only way to find the constant is to substitute in each value in the equation and calculate the value of the constant from there.

  2. Saikam
    • one year ago
    Best Response
    You've already chosen the best response.
    Medals 0

    Yes. For example, in the equation \[s = ut + \frac{ 1 }{ 2 }a t^{2}\] the constant 1/2 has no dimension and would not be shown in the dimensional equation. And regarding your second question, L DOES cancel out since \[L ^{a} * L ^{c} = L ^{1/2} * L ^{-1/2} = 1 (dimensionless)\]

  3. Not the answer you are looking for?
    Search for more explanations.

    • Attachments:

Ask your own question

Ask a Question
Find more explanations on OpenStudy

Your question is ready. Sign up for free to start getting answers.

spraguer (Moderator)
5 → View Detailed Profile

is replying to Can someone tell me what button the professor is hitting...

23

  • Teamwork 19 Teammate
  • Problem Solving 19 Hero
  • You have blocked this person.
  • ✔ You're a fan Checking fan status...

Thanks for being so helpful in mathematics. If you are getting quality help, make sure you spread the word about OpenStudy.

This is the testimonial you wrote.
You haven't written a testimonial for Owlfred.