anonymous
  • anonymous
In dimensional analysis, how do we go from [T]^1 = [L]^a [M]^b ([L]^c/[T]^2c), knowing that a = 1/2 b = 0 and c = -1/2, to t = (constant) sqrt(h/g)? How do we know there's a constant and where does it come from? Wasn't L supposed to cancel itself out?
MIT 8.01 Physics I Classical Mechanics, Fall 1999
  • Stacey Warren - Expert brainly.com
Hey! We 've verified this expert answer for you, click below to unlock the details :)
SOLVED
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
katieb
  • katieb
I got my questions answered at brainly.com in under 10 minutes. Go to brainly.com now for free help!
anonymous
  • anonymous
Actually, the equation was [T]^1 is directly proportional to [L]^a [M]^b ([L]^c/[T]^2c), which means that dividing [T]^1 by [L]^a [M]^b ([L]^c/[T]^2c) would give you a non-zero constant. The constant has no dimensions, and does not affect the final dimension of the answer. Unfortunately, this also means that the constant cannot be identified by dimensional analysis. The only way to find the constant is to substitute in each value in the equation and calculate the value of the constant from there.
anonymous
  • anonymous
Yes. For example, in the equation \[s = ut + \frac{ 1 }{ 2 }a t^{2}\] the constant 1/2 has no dimension and would not be shown in the dimensional equation. And regarding your second question, L DOES cancel out since \[L ^{a} * L ^{c} = L ^{1/2} * L ^{-1/2} = 1 (dimensionless)\]

Looking for something else?

Not the answer you are looking for? Search for more explanations.