• anonymous
r = 2/(r-sin(theta)) convert the given equation to a rectangular equation
  • Stacey Warren - Expert
Hey! We 've verified this expert answer for you, click below to unlock the details :)
At vero eos et accusamus et iusto odio dignissimos ducimus qui blanditiis praesentium voluptatum deleniti atque corrupti quos dolores et quas molestias excepturi sint occaecati cupiditate non provident, similique sunt in culpa qui officia deserunt mollitia animi, id est laborum et dolorum fuga. Et harum quidem rerum facilis est et expedita distinctio. Nam libero tempore, cum soluta nobis est eligendi optio cumque nihil impedit quo minus id quod maxime placeat facere possimus, omnis voluptas assumenda est, omnis dolor repellendus. Itaque earum rerum hic tenetur a sapiente delectus, ut aut reiciendis voluptatibus maiores alias consequatur aut perferendis doloribus asperiores repellat.
  • schrodinger
I got my questions answered at in under 10 minutes. Go to now for free help!
  • ZeHanz
The connection between polar and cartesian coordinates is:\[x=r \cos \theta\]\[y=r \sin \theta\]or\[r^2=x^2+y^2\]\[\theta=\arctan \frac{ y }{ x }\] Hint: first rewrite the equation as:\[r(r-\sin \theta)=2\]then \[r^2-r \sin \theta=2\]then do some substitutions... Just ask if you don't succeed!
  • ZeHanz
If you substitute the values for r^2 and rsin(theta) as stated above, you get: \[x^2+y^2-y=2\]This is already fine, because it is a rectangular equation. But there is one more step. Complete the square for y:\[x^2+(y-\frac{ 1 }{ 2 })^2-\frac{ 1 }{ 4 }=2\]Or:\[x^2+(y-\frac{ 1 }{ 2 })^2=2\frac{ 1 }{ 4 }\]This is the equation of a circle with center (0, 1/2) and radius 3/2! So it is a very simple curve after all...

Looking for something else?

Not the answer you are looking for? Search for more explanations.